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ABSTRACT

- While the cost of computing hardware has decreased steadily, the cost of software
design, development and, maintenance has increased. One approach to reduce the cost
of software development is rapid prototyping. Further, it has been proposed to combine
the design strategy of rapid prototyping with a computer aided software prototyping
svstem. Such a svstem would allow the software designer tc cmploy a software base of
reusable program modules. It would assist in prototyping and would automate a large
part of the development effort. An important component of the automation would be
a language translator facility. This translator would allow the designer to develop a
software prototype in a high level specification language which would be simple and
convenient to use and would translate the specification statements into an executable
software language.

This thesis demonstrates the feasibility of using a language translator by developing
a prototype translator for a computer aided software prototyping system. The translator
is written in Attribute Grammar (AG) language and translates software specifications
stated in the Prototvpe System Description Language (PSDL) into computer executable

code in the Ada language. + ¢ .
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I. INTRODUCTION

A. COMPUTER AIDED PROTOTYPING SYSTEM

A computer aided prototyping system (CAPS) has been proposed which would im-
plement many ideas for improving softwarc productivity [Ref. 1: p. 6§). TFigure | on
page 2 illustrates the proposed architecture of such a systemn. This architecture 1s de-
sizned to be implemented in an automated cnvironment, the rapid prototyping schemat.
The automated environment will make it practical to develop, test, and quickiy modify
prototypes of a proposed system. It will make possible the demonstration of a working
svstem (or perhaps several) to the customer in order to firm up requirements and func-
tional specifications.

{. Major CAPS Components

The CAPS architecture consists of six major subsystems. The central objective

of the svstem is to optimize the use of the programmer’s time in prototype development.

The objective of prototype development is to:

® provide a firm sct of requirements and functional specifications which will guide
development of the production software.

* ensurt agreement botveen customer and developer as to the requirements and ex-
pected performance characteristics ofthc systcm

e generate a modular, skeletal structure of the software system which will serve to
guide further implementation

® shorten piototype development time and thus accelerate production system delivery

¢ assist in estimating the uitimate development costs of the finished system

The CAPS allows the designer to enter a specification-based description of the
proposed system in a high level language constructed cspecially for prototype develep-
ment.  These specifications are acted upon by a rewrite subsystem and an execution
support subsystern. The rewrite subsystem converts the specification statements into a
normalized form. The normalized statements are used to scarch a software database of
reusable compenents which are then provided to the exccution support subsvstemn [or
instantiation in the prototvpe. The specifications arc also acted upon by the execution

support subsystem to produce execuralle code into which the reus: Ll software modules

*‘-:.'.}\"\ 'r' :),'&. e e N L
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: Figure 1. Computer Aided Prototyping System Architecture (CAPS)

:

.: are instantiatcd. The resulting prototype can then be tested {or conformance to specifi-

o cations and proper operation. New versions or redesigned versions can be quickly con-

u structed and tested as the need arises.
2. A Prototype Language

v The core of the CAPS is the Prototype System Description Language (PSDL).

\ It is opt:imuzed for use at the specification and design level of programming. Special
o structures exist for describing real-time systems. A PSDL description represents a system ;
D «
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as operators commnunicating via data streams. The structure of the languuge encourages
modular design of the prototype and by extension the cventual production version. .\
more detailed exanmunation of PSDL will be undertaken in Chapter 3 of this paper.
3. Rewrite System

The rewrite system examines the PSDL file and produces a normalized version
of the specifications which is used to search the software base [or appropriate compo-
nents. If no component is found, the designer may examine the module to sec if it can
be decomposed into more primitive modules. If it can be, then the new modules are

specified 1n PSDL, the specifications arc normalized, and the scarch is repeated. 1f

hY T P Y

no modules are found and the modules cannot be decomposed then they must be hand
coded in the exccutable language. When modules are found in the software base, thev 3
arc provided to the ¢xecution support subsystem for instantiation in the prototype pro-
gratn.  The functions of managing the database, searching it for appropriate modules, 3
and calling forth those that are found is the province of the Software Design Manage-
ment System. Currently a special Object-Oriented DBMS is being developed to mect the
special requirements of the SDMS [Ref. 2]. For present testing it may be neccssary to
cmploy a commercially available database, though none currently meets the spectal re-
quirements of this svstem. [Ref. 1: p. 70] 3
4. Execution Support System
The Exccution Support System (ESS) cousists of three interrclated parts, one
of which is the subject of this paper. Figure 2 on page 4 illustrates the relationship be-
tween the components of the £SS. Each element of the system and its function will be
bric{ly described. The Translator design will be developed in Chapter 3 and 4. "
a. Translator
The Translator (TL) converrs PSDL source code into Ada®! source code.
Output from the TL is provided to the Ada compiler,/linker along with some additional )
information from the Static Scheduler (SS) to produce Ada object code. The object code 0
1s then exported to the operating system and can be run f(or test and demonstration

purposes. The TL passes real tune constraints through without translation.  The TL

AR

I Ada is a registered trademark of the United States Government, Ada Joint Program Olfice.
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Figure 2.  Execution Support System (ESS) structure

creates code to implement the operators as procedures which will be called by the main
subprogram/schedule created by the SS. The TL is responsible {or instantiating a ge-
neric package which models the data stream bulfers between operators. The TL also
ensures that all operator triggering conditions are encoded correctly, and that the Trig-

ger data type and the Exception data type are properly encoded for the {inal model.
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B b. Static Scheduler :
y »
0 The SS examines the PSDL source file to locate all modules having real- .
P time constraints, and to determine if any special precedence relations exist among the "
al
modules. The SS then generates the necessarv Ada code to implement the timing con- \
L o
» . i
: straints and the precedence relationships. The SS also generates the main subprogram !
3 . . i
) or task. The SS finallv generates a schedule of operation for the program which takes \
+ - 3
A into account the worst case time schedule for all modules that have critical, real-time
constraints such as maximum execution time, minimum calling period, and munimum ‘
)
.' response time. This information is encoded into the modules to enforce timing con-
e : . . . . :
; straints at run time. Figure 3 illustrates the action of the SS. Janson [Ref. 3] and 3
O’Hern [Ref. 4] have studied the conceptual and initial empirical investigations into the
3 v
o design and implementation of the SS. .
" "
X ‘
Time critical .
4 operators must X
, be scheduled 1
t
1)
A 8 C- ‘
X 4 4| - R
b 0 T I 1 | N
P time A
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Yl
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v "
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g Time available .
for non-criticai -
g operators N
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¢. Dynamic Scheduler

:
.
ol
The Dynamic Scheduler (DS) operates at runtime along with the prototvpe .'E,'
model. It is designed to control the execution of all non-critical operators within the ‘:
program. A non-critical operator is one which s not subject to hard real-time con- ,’
straints. The DS is invoked each time there is spare time within the static runtime :
schedule created by the SS. At that time DS commences exccution of the next available . :
. . .. . Y
module in its set of operators and continues to invoke non-critical modules until the
‘ availuble time is exhausted. At that point, opceration of the DS is interrupted and con- :.,-
trol 1s returned to the SS to continue the time critical operations. Figure 3 on page 5 :;»
shows the relationship between the DS operation and the SS operation. Caton [Ref. 5] I
has examined the conceptual and fundamental design issues for the DS. 7:
| A
B. CENTRAL AIM OF THIS PAPER e
In order to approach the development of the proposed CAPS architecture on a ':-
sound basis, it is necessary to consider the important theoretical ideas on which the of- :'\.
fort will be based. The key literature which made possible the cffort to produce this E
‘ prototype translator will be reviewed. The reader may also wish to consult additional o
references cited in the bibliography. Many of the materials therein provide insight into )
the difficult problems of improving productivity in software engineering through auto- :::
.
mated means, and of configuring software systems to address real-time constraints on “:;
svstem performance. ",
The purposc of this paper is to demonstrate the feasibility and functionality of an '?*
automated language translation facility which can be coupled into a larger, intcgrated
j system for automated software prototyping. This translator will receive as input a o
source file in PSDL which specifies the system to be prototyped. [t will produce as A
output, source code in the Ada language which will be compiled and exported to the \'
operating system. Discussion of the rationale for choosing PSDL and Ada for usc in a "‘
prototyping environment will be presented in Chapter 3. Architecture and design of the N
translator will be developed in Chapter 3. This study will be limited to producing a "
translator capable of recognizing the (ull PSDL svntax and producing, at most, rudi- -
mentary Ada output. This linutation is imposed because a rigorous, formal definition - N
bty
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of the relationship between Ada and PSDL has not yet been accomplished. Once such
a definition is achieved, the results must be applied to the elementary translator created
in the present effort.  The resulung translator, combining a formally established re-
lationship between the source and target languages with a translator which recogmzes
PSDL syntax, will meet the requirements of the CAPS architecture {or a translator ap-
plicable to general cascs.

The present work is arranged as follows:

Chapter 2 discusses the theoretical basis for the CAPS system and surveys previous
rescarch which lavs the foundation for the present work.

Chapter 3 presents the basic implementation approach to the translator construction.

Chapter 4 presents some possible applications of CAPS research to the ficld of tele-
communications.

Chapter 5 presents conclusions and possible [uture avenues for rescarch.
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II. THEORLTICAL UNDERPINNINGS OF CAPS

A. HARDWARE AND SOFTWARE: A PRCBLEM

Several trends have become apparent in the computing industry. These trends have
a significant impact on the field of software engineering. The first of these trends is the
expansion of computer usage into an ever widening arena of applications. Early digital
computers were largely confined to militarv, govermnental, and rescarch applications.
A relatively small population of users was aflected by the computer. Today the com-
puter is a significant feature of everyday life for almost the entire industrialized world.
Few governments or businesses {unction without the aid of computer systems. Com-
puter systems route our telephone calls and record our bank transactions. Military
forces worldwide employ computers for handling record traflic and a variety of com-
mand and control functions, as well as many tactical applications.

One study estimated that forty percent of the U.S. labor force relied on computers
in performance of their daily work during 1985. Another barometer of the growth in
demand for computing is the percentage of the Gross National Product (GND) that it
represents. [t has been estimated that the total amount spent on all aspects of com-
puting in 1980 was approximately 5 percent of GNP or about $130 billion. [t is expected
that this will rise to as much as 12.5 percent of GNP by 1990 [Ref. 6: p. 124].

Another trend, is the increasing power of each new generation of computing ma-
chines and the corresponding decrease in relative cost for a machine of that power. The
cause of this trend is found in improved engineering and production methods {or tran-
sistors and integrated circuits. The advent of Large Scale and Very Large Scale Inte-
gration (LSI, VLSI) have made possible great improvements in computing hardware
architecture and lower costs of production. Each new generation of computing ma-
chines has benefited [rom engineering and production knowledge gained in previous
generations.  Today's machines are more reliable and robust in performance than their

predecessors.
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The decrease in hardware costs and increasing demand for computing services has
gencrated a third trend in the industry. There is an increasing cost of software devel-

opment and maintenance as compared to the costs of hardware, and there is an in-

creasing cost of software as a total fraction of computing costs. Figure 4 on page 9

shows the changing ratio of expenditures for hardware and software over time [Ref. 7].
The figure should not be interpreted as applving to any specific system. Instead, it re-
presents the general trend within the industry, that software development and especially
maintenance represents an increasingly large portion of the cost of computing. The shift
in resources to software maintenance arises from several considerations. There is more
and more software to be maintained so a correspondingly larger number of persons are

required to perform maintenance {unctions.

Hardware

Software development

Percent of cost

Software maintenance

Changing hardware/software cost ratio
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Mills [Ref. 8: p. 267] points out that in only 25 years of soltware development his-

tory, some 75 percent of data processing personnel arc taken up with maintenance, not
development. e states two reasons [or this. Oune is logistic and the other a technical
reason, The logistic reason is that systems are maintained indefinitely alter a definite
period of development. Euch time a development is completed some {raction of the
work force must be diverted to maintenance. Mills [Ref. 8: p. 267] demonstrates that,
for a constant work force working for a long period of time, the 75 percent fraction
devoted to maintenance can be predicted. [le states that only the purging or replace-
ment of older applications keeps the figure below 100 percent. The technical reason is
that it has proven more difficult to develop correct and capable systems in the first place.
The ability to integrate and debug systems has been consistently underestimated. Time
after time software systems are late in delivery and do not do the things the users ex-
pected them to do. Also, there have consistently been underestimations of the unccr-
tainty and change facing software applications. For both these reasons, a large work
force is required to do both corrective and adaptive maintenance to keep the application
software functioning [Ref. 8: p. 267).
" Another aspect of maintenance is what we mean by that term in the software in-
dustry. Maintenance of software systems does not simply mean corrective maintenance
in the strictest sense. Carrio [Ref. 9: p. 19] lists many other activities which are often
encompassed by the term, including:

® Enhancing the system ("gold-plating”) in ways that do not alter the core require-
ments of the system

[}

Adding new or substituting other requirements {or performance relative to those
implemented (often the result of a poorly delined requirements sct at the beginning
of development)

* Changing the bascline performance level to expand the performance envelope or
duc to expected changes in doctrine-optimization

¢ Changing baseline requirements due to a planned evolutionary development of the
system

Mills [Ref. 8: p. 207} humorously describes the terms “debugging” and “mainte-

nance” as cuphemisms in the software engineering world. Dcbugging is the correction

of errors in the program which were originally put there by the programumers.
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Maintenance is the restoral of the program to a correct state of operation; but the
program was never correct in the first place. The point he aims at is that proper soft-
ware design and engineering techniques are required to achieve maximum productivity
and quality software svstems.

Beohm [Ref. 10] estimates that in 1980, the cost of software for computer man-
ufacturers, user organizations, and software firms was S$40.2 billion dollars. This
amount represented 84 percent of the total budget spent on computing hardware and
software. As seen in Figure 5, software may account for 90 percent of the amount

spent on computing systems by the 1990°s [Ref. 11: p. 49].

Percent of cost

100

80
Hardware

60

40
Software

20

]
1965 1970 1985
Year

Figure 5. Harware/Software cost trends
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The rising costs of software nave been well documented in DOD. In 1973, software

costs represented over 46 percent of the total DOD software budget [Ref. 12: p. 14d].
[t has been noted that DOD experienced a 51 percent increase in the direct costs of its
computing svstems, in spite of dramatic declines in the cost of hardware
(Ref. 13: p. 3].

Unfortunately, productivity in software engineering has not kept pace with the
growth in demand for computing systems and software applications. This is graphically
illustrated in Figure 6 [Ref 14].

2.5 r

Demand (12%/yr)

Praductivity(4%/yr)

Equvalent 1980 Software Personnel ( x 1,000,000)

1.0
&
Persaonnei{4%/yr
05 rso (4%/yr)
] | | |
1980 1982 1984 1986 1988 1990

Figure 6. Software suppiy and demand trends

The figure shows that growth in demand for qualified software personnel is growing at
a ~ate which outstrips their availability. Furthermore, the growth in productivity among

software personnel also lags demand. It has been estimated that the average
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programmer, in the absence of modern programnung methods, can produce six to ten '\\}

; lines of debugged code per day. This is influenced by a variety of factors ranging from :
! programmer competence to the number of persons working on a project and the purpose ;-‘
for which the program is written. Tairley [Ref. 15: p. 17] states as a rule of thumb, b,

that typical productivity levels for a programmer on a per day basis as a [unction of task :-_:'
complexity are: :'
o less than one line per day for systems progranuning L
A

¢ 5 1to 10 lines per day for utility programs :

o 25 to 100 lines per day {or application programs o
o
[t 1s a truism that, in general, a computing system is only as capable and reliable ..,
as the software cmploved in the system. In an age of incredible advances in hardware #
technology, the computing industry is hampered by slow gains in productivity in soft- :j
,
ware engineering. Various sources of this situation have been cited. One clement is the )
rclative youth of the sottware engineering discipline in comparison to other engincering ."
lields. Only three decades of experience and study support software engineering. These .‘.‘
' have been three decades of momentous change. The early leaders of the computing ‘
revolution were not native to the field. There has been a great dcal of learning “on the ,,’

job” for most softwarc engineers. Until barely ten years ago there was a lack of rigor 5
associated with program development and software enginecring. As time has passcd o
software engineers have recognized the nced to develop a more rigorous approach to !'{
}. programming [Ref. 8: p. 208-269]. Even the relatively young ficld of electronics cngi- §
ncering is founded in the rigor and discipline of centuries of physical scicnce and '\:

mathematics. '

b
Another problem has becn the f{ailure to recognize the importance of human com- 3 .E

munication to the discipline of software engineering. Computing is a human endcavor,
in support of human nceds. Ilumans must be able to comumunicate those needs to the
system developer, who in turn must express an answer to those needs in the computing
; system. If there is any [ailure of communication by cither party the result will be a

system that fails in one degree or another to meet the requirements of the human uscr.
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These trends lead us to conclude that some effort must be irade to achieve greater pro-

ductivity and eflectiveness in software engineering.

B. THE TRADITIONAL “WATERFALL LIFE CYCLE”
1. Characteristics

The traditional method of software engineering is the "waterfull life cycle.”
Figure 7 on page 15 shows a graphic represcntation of this approach. Under this
schema, the customer perceives a need for a computing application {or his operation
or organization. e approaches a software developer and describes his problem. After
some negotiation. the software developer determines what he believes the user’s needs
are and an agreement is rcached to produce a computing package to meet the need.
Contracts are let and the developer converts the customer’s statements of need into
precise (hopefully) functional specifications which can be implemented by the program-
mers. An architectural design is established based on some method of data flow or
control flow. The system is then parceled out to programumers in manageable modules
which cach programmer is {rce to implcment. As modules are developed they are as-
sembled. When the system is complete then (ull scale testing and debugging of the sys-
tem begins. If the system tests satisfactorily, the job is done and the system delivered
to the customer for acceptance. Then begins the cycle of system maintenance, [[ the
svstem fails or has numerous bugs (as is invariably the case with large systems) or if the
svstem does not meet the functional specifications, or, worse, does not function as the
customer expected, then the svstem must be restructured in various ways to correct the
problem. This can be very costly, especially since tremendous amounts of manpower
will have been already been invested at this point.

2. Difficulties With The Traditional Approach
Carrio {Ref. 9: p. 17] describes this life cycle as a three phase event consisting

of}

conceptual and definition phase ( the requircments analysis phase)

development phase ([rom functional specifications through test system)

deployment and operational phase (maintecnance and support)

14
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Figure 7. Traditional "waterfall” approach to the software lifecycle ,
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‘] -
D w
He points out that the problem with this approach is the lack of interaction -
(] . . &
| between the keepers of doctrine (the customers) and the Jevelopers in the early stages J
of the life cycle. Phase one is the province of the users. Phase two belongs to the de- '
) »
) velopers and their supporting programmers and subcontractors. Then in phase three the K
.
two groups begin to interact in earnest. The key difficulty with this life cycle is
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communications -- the ability of the user and developer to cominunicate, understand and

insure the integrity of the initial set or requirements. The question of whether the “as
specifled,” the “as designed.” the “as tested,” and the “as built” svstems are all the same
must be asked again and again. Under this life cycle the answer is no [Ref. Y: p. 18]
Frequently this life cycle approach has led to cost overrun, late product delivery, and
failure of the "as delivered” system to meet the needs of the customer. It mav be con-
cluded that the traditional life cvcele is one source of difficulty in the struggle to achieve
greater eflectiveness and productivity in software enginecring.

Several technigques have been proposed to improve upon the traditional life ¢y-
cle. First of all, a rigorous design phase, in which customer requircments are exhaus-
tively examined to produce a firm set of functional specifications which accurately reflect
what the customer wants. These are used throughout the remaining life cvcle as the
standard for system development. Sccond, the use of prototyping in an automated en-
vironment to provide guideline mnodels for the entire lifc cyele. Use of automated toois.
Al knowledge based systems, and various application support environments to aid the
software engincer in developing, documenting, and maintaining the svstem
[Ref. 9: p. 20). This would be coupled with top down development and a structured
approach to design to enhance system muintainability and reliability

[Ref. $: pp. 269-271].

C. RAPID PRCTOTYPING
1. Description of Rapid Prototyping

An alternative to the traditional approach is rapid prototyping. Under the rapid
prototyping paradigm, an effort is made to ensure that the customer and the developer
both understand what the customer’s requirements for a software system are. This
schema is graphically illustrated in Figure 8 on page 17. In this approach. there is
again a period of discussion with the customer to determine his requirements.  The re-
quirements are used to generate functional specifications.  With the functional specili-
cations, a prototype of the intended system is constructed and demonstrated for the
customer. At this point the customer can decide if the prototype rellects the type system

he had in mind; and the developer can see whether his perception of the customer's
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Figure 8. Rapid prototyping approach to software engineering

requirements was correct. Any adjustment needed in the functional specifications are
made, the prototype system is receded tc rellcct the adjustments, and the svstem is
once again demonstrated. This process is repeated until the prototype behaves as the
customer and the developer expect. Full scale development of the system is commenced

once prototyping is completed. [Ref. 16]
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2. Objectives of Rapid Prototyping

The iterative, rapid prototvping approach accomiplishes several goals. Tirst,
It insures accurate communication between the customer and tiie developer. Due re-
cognition to the dillicultics of human interaction is given. The customer certainly knows
his profession and has a clear mental picture of what he wants to accomplish with a
computing svstem, but may not understand computing systems themselves. The solt-
ware engineer understands computing systems but may not understand the world of the
customer. Theyv are both speaking English but may have no idea what cach other is
saving. Rapid prototyping seeks to cut through the communication difliculty by pro-
viding an executable modcl of the intended system which the customer can sce. Tihie
customer will usually be able to recognize whether a working software syvstem perforing

as he expects. This will ensure a stable set of requirements is achieved early in svstem

.:

development. [Refl 1: p. 71}
Prototype construction aims to make efficient use of the designer’s time. s

such it differs from production software in which the goal may be driven by the need o

NANSNN

optimize spced, or memory usage, or accuracy and ease of use. Production software
is designed to be fault tolerant and capable of handling a wide range of error conditions.
The prototype may not be fault tclerant at all. In all probability, it will not be opti-
mized in performance. Prototyping the system generates a skeletal design {iamework
which may serve as the initial design structure of the production version [Ref. 1: p. 71).

The early prototypes provide a traceable link between requirements, design, hmnple-

-,
*'

B ‘.'
'Ca
*d
N
-I
5
.\
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mentation and maintenance [Ref. 9: p. 20]. The use of prototypes aids in feasibility
studies. Various methods of implementing portions of the svstem can be tested aid the

more promusing raethods can then be selected for implementation in the production

LIV LR R

NN e

svstem. [inally the prototyping approach aids in cost estimation. The cost of the final

svstem will often be proportional to the final cost of the production version.

(Ref. 1t p. 71
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D. IDEAS FOR INTEGRATED, AUTOMATED PROGRAMMING

ENVIRONMENTS

In his ACM award winning dissertation, Generating Language Based Environments.,

. Thomas W. Reps [Ref. 17: pp. 1-2] raises many salient issues regarding soltware cngi- )

neering and software productivity. 1le observes that much of software Jevelopment re-

quires exhaustive attention to organizational detail. By this he means many things.

Among them are:

¢ the need to constantly be concerned with details of language svntax and semantics @,

¢ the accurracy of program entry

) e the details of operating a series of software tools such as editors, by,
compilers, linkers, debuggers, and library managers ( all in the proper order) B!
Ca . . . *J

y ¢ maintaining an audit trail of documentation for the system "

under development -

the necessity to communicate with others in the development process

All the while the system developer or programmer also hopes to perform creative

intellectual work, vet it comprises a small part of his daily effort. The remainder of his

e time is croded away by the mundane details of the job. A similar observation has been 3
made by Fairley [Ref. 15: p. 12-13] and Brooks {Ref. 18: p. 16-18]. Reps goes on to .
. point out that much effort has been expended to make the programmer’s life casier; to 3
shicld him from the details and allow him to do creative work. The form of this help )

N has characteristically been a series of automated tools such as editors, debuggers, parser N

N generators and the like. These tools have provided some relicf, and have aided pro- §
. ductivity. However, they have generated problems of their own such as: Ry
s learning to operate each of these independent tools R

. s cmploving the tools in the correct scquence when needed M
X

Worse, the individual tools are not normally integrated with each other to take full N

advantage of computing power now available, and to automate away the maximum

amount of detail, leaving the programmer completely [ree to pursuc productive creative

'.“."l_ o

ay S 2.

endeavor. Reps argues that to make true breakthroughs in this area it will be necessary

’ to creatc an automated design environment incorporating all necessary tools under one
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coherent interface. lle contends that such a system would be optimized to the particular
language for which it is designed. This would be achieved by designing an integrated
environment which “understands” semantics of the programming language being uscd
in it

Reps then presents the development of a Synthesizer Generator whose purpose is to
generate language-based edtiors for different programming languages. The tool uscs a
specification of the display format, syntax, and static semantics of the language to be
cdited. The objective i1s to create an editing environment which will prevent entrv of
incorrect syntax while the programmer is editing the program. The primmary concern of
the Reps dissertation is developing a framework for the semantic component of the
language based editor. Ile discusses various methods to gencrate a programming envi-
ronment from an attribute-grammar description of a language. Reps also discusses what
attribute grammars are and discusses several algorithms for attribute evaluation. Ile
then shows how the semantic component of a language-based editor can be developed
from an attribute grammar description and discusses some of the problems created by
using attribute grammar based development systeins, chief of which is the extravagant
use of storage resources. [Ref. 17: p. 4]

Several ideas in Reps work have impact on the design features envisioned for the
CAPS. These include:

¢ incorporation of an “intelligent” editor ecnvironment which will aid the program
designer in entering the prototype description correctly

¢ integration of all the tools necessary for program prototyping under one coherent
interface.

¢ usc of attribute grammar based approaches to language description,

There are similaritics and differences in what Reps does and in what is aimed [or in
the CAPS generally and in the Translator in particular. Reps is specifically concerned
with development of editing environments based on attribute-grammar descriptions of
a language. CAPS is concerned with incorporating an intelligent editor along with nu-
mcrous other tools in order to remove a great deal of the mundane drudgery from soft-

ware development.  Reps uses attribute-grammar approaches to develop editing
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environments. [n this thesis, an attribute grammar based tool is used to develop a
translator which can convert PSDL into Ada.
Reps™ work scts a direction for future programuning development environments, It

helps reveal a promising application for the concept of attribute-grammars. It demon-

strates the practical application ol important theoretical concepts to the problems of

productivity in software engineering.

E. DESCRIPTIONS OF A COMPUTER AIDED PROTOTYPING SYSTEM

A general description of a CAPS is provided in two papers. First is the technical
report, A Computer Aided Prototyping Systemn, by Luqi and Ketabehi [Ref. 1). Second
1s the technical report, Research aspects of Rapid Prototyping, by Luqi [Ref. 16]. These
papers describe the overall concept of a CAPS. They lay out an architectural design for
such a system and provide a starting point for the rescarch in this thesis.

The CAPS would provide an intcgrated environment for the development and test-
ing of prototypes of software systems. It would be specifically designed to address sys-

tems which were large, embedded, and had hard, real-time constraints. It would make

use of the Ada language, and would employ a database system to store and recall both

rcuseable software components in the Ada language, and previously designed proto-
types in the PSDL language. A system to automatically translate the PSDL descriptions
of a system into Ada code and compile them so that they could be cxecuted to demon-
strate the prototype would be provided. The CAPS would be based on two ideas which
would establish the fundamental character of the system. One is the methodology of
rapid prototyping, the other is a language (PSDL) specifically designed [or writing
prototype designs of systems with hard, real-time constraints. PSDL would give ex-

pression to the methodology of rapid prototyping and form the core of the CAPS.

F. THE PSDL LANGUAGE AND RAPID PROTOTYPING

The central paper on the PSDL language and the application of the rapid proto-
typing methodology is Luqi’'s Ph.D. dissertation, Rapid Prototyping For Large Software
System Design [Ref. 19]. Four related papers have been published which provide similar
detail on the nature of PSDL and rapid prototvping. These are:

* A Prototyping Language for Real Time Software [Ref. 20)
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® Rapid Prototyping of Real-time Systems [Ref, 21|
o Languages for Specification, Design, and Prototyping [Ref. 22)

o [Cxecution of Real-Time Prototypes [Ref. 23]

The Execution of Real-Time Prototypes paper is a short technical report prepared for
the Naval Postgraduate School. It very briefly suminarizes the concept of CAPS and the
rapid prototyping methodology. The remaining papers are closely related in content and
purpose to one another, and are separated by the depth to which they examine the
subject from the technical report.

The semunal paper among the remaining papers is the Luqi Ph.D. dissertation. The
paper begins by introducing the PSDL language. An cxtensive discussion of the CAPS
svstem is set forth. The various components of the PSDL language are presented. The
application of rapid prototyping to a system developed using PSDL is discussed in some
detail. There is a brief discussion of the implementation of various PSDL language
compeonents within the ESS, and a discussion of the functions of the SS, DS, and TL.
An example of a PSDL prototype is presented. Finally, a summary of PSDL syntax in
BNF form is provided.

The BNF summary of PSDL syntax is included as Appendix A of this thesis. From
the standpoint of translator design, the most important sections of the dissertation, arc
section 2, on PSDL language elements and the discussion, in section 4, on how certain
PSDL elements might be implemented by the Translator. Since the objective of this
paper is to develop a Translator, section 4 of the Lugqi dissertation provides the foun-
dation for chapter 3 and 4 of this thesis.

Two of the papers are available in published journals. The paper, 4 Protoyping
Language for Real-Time Software [Ref. 20}, is esscntially a reprise of the information
presented in the Luqi thesis, without the BNF diagrams for PSDL. The paper presents
a detailed description of PSDL and its emplovment under a rapid prototyping paradigm.

 Rapid Prototyping of Real-Time Systems [Rel. 21} presents an abbreviated discussion
of PSDL and its use in a rapid prototyping setting. Less emphasis is placed on the
specifics of PSDL syntax and language elements, and more on the general model and

concepts involved in employing PSDL under the rapid prototyping methodology. The
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paper serves as an excellent introduction to the fundamentals of PSDL and rapid pro-

tetyping in the CAPS environment,

Languages for Specification, Design, and Prototyping [Ref. 22], 1s an extensive
presentation of the current state of language development in the three separate arcas of
specification, design, and prototyping. The authors distinguish between the three goals
and discuss the characteristics of a languages aimed at satisfying the demands of each
of the particular areas. Discussions and illustrations of various currently available lan-
guages are presented. The paper is an excellent general discussion of issues involved in
selecting a language for a particular purpose. The paper points up the different prob-
lems associated with each approach to software production and demonstrates possible
solutions. PSDL is presented as a good general purpose language for specification,
design, and prototyping. PSDL has many features which make it convenient for use
with Ada including:

® is an cxecutable language construction unlike many specification or design lan-
guages which are not

¢ supports a modular approach to program design.
¢ supports data, control, and operator abstraction

¢ supports exception handling, separate compilation of generic units, and use of
reuscable components.

G. ATTRIBUTE GRAMMARS AND TOOLS

The objective of this thesis is to generate a translator which will read a PSDL source
{ile and produce and Ada sourcc file. This might prove a daunting task were it not for
the availability of an automated translator generator tool called Kodivak [Ref. 24]. The
Kodivak system requires as input, an attribute gramumar (AG) description of the source
language. It is proper to consider some literature which addresses AG's in gencral, and
the Kodivak in particular.

I.  Attribute Grammars: What Are They?

The classic work on AG's, is Semantics of Context-free Languages

[Ref. 25: pp. 127-145].  The paper sets forth “ . . . a technique for specifving the
“meaning” of languages defined by context-frec gramumars . . . ." [Rell 23 p. 127] It is

assumed that the language is “context-free”. That is, the “mecaning” of any string or
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element in the language is independent of the context in which it is used. This is usually
not the case for natural languages (¢.g., English, et al.), but often is the case {or pro-
gratnming languages. [t is asserted that the “meaning” of any string in a context-free
language can be determined “. . . by defining "attributes” of the svmbols in a derivation
tree for that string.” [Ref. 25: p. 127] If the production rules for a given language are
known, it is possible to assign [unctions to each of the production rules which define
the “attributes” of a given syvmbol or combination of symbols. The attributes may be
developed in one or both of two wavs. They may be “svnthesized”, defined in terms of
their descendants; or they may be “inherited”, defined in terms of their anccstors
[Ref. 25: p. 128]. Colloquially, synthesized attributes are developed from the bottom
up in we “er:-ation tree, while inherited attributes are developed from the top down.
Once all the attributes of all the svmbols in the string are known, the “meaning” of the
string i1s known. These simple but powerful concepts form the foundation of AG ap-
proaches. Knuth presents an applicative example of these principles as the first part of
his paper [Ref. 25 pp. 128-130]. The remainder of the paper is devoted to the math-
ematic and formal properties of the technique, and another examplc of how the method
can be applied to programming languages. Tinally, Knuth compares his mcthod with
other known methods of semantic definition.

For the purposes of this paper it is possible to summarize Knuth's work. First,
supposc there is a language for which there are a set of production rules. PSDL is such
a language, with a context-free grammar and a set of production rules in the form of
BNF diagrams fer the language. Then to determine the “meaning” of any string con-
structed according to those rules, it is necessary to:

I. parse the string into its component parts and create a derivation tree of the string

ro

create a sct of functions (equations) which assign meaning to each of the compo-
nents of the string

e

reduce (determine the meaning of) the string based on the BNF rules and the
meaning of cach of the components

The Kodiyuk system allows the application of the technique in a practical and
convenient fashion to real problems. Detailed discussion of the AG approach will be

deferred to chapter four of this thesis. Suffice it to say, that AG’s have been uscd for
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a variety of purposes, among them, the construction of compilers, pretty-printers, and

- s

translators. Knuth's short paper is at once the cornerstone and keystone of a whole area
of software engineering research.

2. An AG Based Tool For Translator Generation

The effort required to produce a translator of the type desired for the CAPS is

Caje @

- considerable. Fortunately, a tool has been developed which makes possible the auto-
, matic generation of translators. That tool is the Kodiyak system. Kodivak is an AG
based tool developed by Robert M. Herndon as a Ph.D. dissertation at the Umversity
of Minnesota [Ref. 24]. The Ph.D. dissertation provides exhaustive details on the tech-
nical aspects of translator generation, the operation of AG based systems, and the de-
sign and construction of Kodiyak. Another work on the Kodiyak is AG: A4 Useful
; Attribute Grammar Translator Generator [Ref. 26). Although it refers to an earlier ver-
sion of the Kodivak (then known as AG), it provides a useful description of the Kedivak

svstem. The most useful work is The Kodiyak Reference Manual, which is an appendix

- o .

to the dissertation {Ref. 24: app. 1]. This is a detailed reference manual describing how

-

to employ the Kodiyvak to generate a translator.

Kodivak itself is “. . .a language designed for constructing translators
[Ref. 24: p. 1, app 1]” Itis AG based. “The Kodiyak translator accepts a context-frce
grammar along with such attribute declarations and cquations, a scanner specification,
and  output  declarations, and  generates the  described  translator
4 [Ref. 24: p. 1, app 1].” Kodivak works on many Unix®2 based systems. It requires the
. use of various resident utilities. A C library and compiler, the LEX (lexical analyzer)
; [Ref. 27] and the Yacc (vet another compiler compiler) [Ref. 28] must be present in or-
der to use Kodivak. The system is very cllective and is presently in use at this institution
to develop a pretty printer, as well as the translator presented in this thesis. [t s pres-

ently in operation on a Vax®3 11,785 and a Sun®+ 3/50 diskless workstation. The pres-

B EL, W,y

ent translator is being developed on the Sun station.

. 2 Unix is a reuistered trademark of Bell Laboratories.
3 VAX is a registered trademark of the Digital Cquipment Corporation.

4 SUN is a registered trademark of Sun Microsystems [ncorporated.
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There are only a few significant difTiculties with the present Kodivak. First, the ]
o system requires a great deal of storage, and a great deal of cpu time. The translator 2
£ listing for the CAPS, presented in appendix C, requires about {ive minutes to compile .
f: on the Sun station. This is a station dedicated to the translator work and is otherwise .

0 idle. On the Vax 11,785, with normal user loads, the same listing requires about 10 '
j:: minutes to compile. The five minute figure on the Sun station represents actual cpu 3

time. Second, the error messages and error handling in the system is not always as

helpful as it could be. Error messages often refer to temporary files created by LEX or

3{ Yacc and not to the original source {ile. Also, when Kodivak scans the input filc. it :
may allow certain crror conditions to pass through which will later be fatal during Lex b
. or Yacc scans. Typical of this type error is a mispelled variable name. So long as i
b ¢
> Kodiyak finds correct syntax in the input file it wiil allow the file to be presented to Lex \
2 and Yacc for processing. A mispelled variable name will result in a fatal crash of the ‘
o . -
Yacc scan and may be fatal to the Lex scan. Ideally Kodiyak should trap any errors of
P this type and exit immediately so that the user can correct the problem before the time
4. . . . e . ..
’ consuming LEX and Yacc scans begin. Nevertheless, Kodivak is powerful and signif- ; !
L
a icantly eases the effort requirced to construct the translator. |
e The Kodivak operates by taking an input {ile which is an AG description of the ]
\J
X input language and the attribute equations which relate the input language te the output A
hy ,
o lunguage. After scanning the file to insure it is in correct Kodivak syntax, the file is ,
A . .
[ ) passed to Lex and Yacc for processing. The end result is an cxecutable translator,
N compiled in the C language. This translator can accept textfile input and will produce !
oy textfile output. 1
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1II. IMPLEMENTATION AND DESIGN CHOICES

A. CAPS
Prototype System Description Language (PSDL) provides the backbone of the
CAPS for design and specification, while Ada was chosen as the language for imple-
mentation. The basis for this choice is found in the characteristics of the languages
chosen. Each offers advantages and disadvantages for the design. specification, and
implementation of hard real-time, large, and embedded systems. Alone, each presents
difficulties in use. Used together in CAPS, the two languages experience a symbiosis,
which results in f{lexibility, power, and ease of use for the system developer. The saime
power, convenience, and case of use are available for the development of CAPS itself.
1. Implementation Questions for CAPS
CAPS is under development and not vet fully implemented. This paper aims to
demonstrate a working prototype for the CAPS translator. Several other papers are in
progress which specifically address other aspects of the system. The capabilities envi-
sioned for CAPS are extensive.
e How can 1t achieve them?
e What is the foundation of the system?
¢ Why is that choice of foundations better than others?

¢ Why is Ada not sufficient in itself to achicve hard, real-time system design and
implementation?

e What are the gencral properties of real-timme systems that demand a tool like CAPS?
These questions and others form the basis of this chapter.

B. FOUNDATIONS FOR CAPS
1. Prototype System Description Language (PSDL)
PSDL is the foundation on which CAPS is being built. It is a language designed
to support construction of large and embedded systems and those with hard, real-time

constraints.
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" a. Embedded and Real-Time Systein Properties
b
% Embedded and hard real-time systems have several general propertics which
U
* place special demands on the designer and his language tools. These properties are:
> 1. Often large, running to millions of lines of code and thousands of modules
0
b 2. Often operated in a multiprocessor environment
P
p. 3. Under the DOD concept, their primary function is often not computing but con-
trolling or monitoring the operation of complex or safety critical systems
& . . 4 N .
o 4. Generally have requirements for high reliability. and penalize the user severcly
\ “ es . . ~ L .
N upon failure (loss of aircraft and crew, loss of control of critical manufacturing or
Al . .
. industrial process, etc.)
. 5. Expect to be emploved over an extended lifetune, with periodic updates and mod-
b ification to maintain currency
1
' . . . - .
\ 6. Are too large for a single individual to understand or program alone but require the
N efforts of teams of programmers and maintenance personnel
48
7. Often require hard, real-time constraints in operation (i.e., operational schedulcs
'\f and dcadlines within the program in recsponse to real world conditions)
- [Ref. 12: p. 15-16]
-
o These characteristics demand several features ol a prototyping language
o which are summarized as follows:
) 1. Should have a simple computational model which limits and exposes the inter-
actions between modules and is consistent with the prototyping methodology
"!
. 2. Should produce executable prototypes
v 3. Should be simple and easy to use
[y 4. Should support hicrarchical design to simplify construction of large, complex sys-
o tems
5. Should apply at both specification and design phase, thereby providing a unified
notation to the user
)
W 6. Should provide specifications suitable for retrieval of rcuscable modules {rom a
X software base
iy . . N .
7. Should support data abstraction, control abstraction, and function abstraction
D
. 3. Should contain abstractions which can be used to construct real-time svstems
2 [Ref. 19: p. 10)
(l
)
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b. Why Use PSDL?
PSDL and Ada both approach the design of software in the same manner.
There are several advantages to emploving PSDL in the CAPS over using Ada directiy.
First, PSDL is a much simpler language. Its grammar (see Appendix A) is very small,
compared to the Ada grammar which is very large. The compactness of PSDL ailows
its use as a tool with which to search a software base by automated means for previously
written modules which will implement the designer’s objectives. The designer does not
need to know what units are available. The CAPS will scarch for Ada components in
the software base for him, and will incorporate them into the prototype as long as they
match the PSDL description. Second, CAPS will use the PSDL description to produce
a graphic representation of the prototvpe program’s hierarchical structure. PSDL is a
distillation of the Ada language’s constructs. Third, the CAPS translator will automat-
ically generate interconnections for Ada procedures to implement PSDL operators.
¢. PSDL Computational Model
PSDL supports the specification and design of hard, real-time and embed-
ded systems with a simple and executable computational model. PSDL models software
systems as a set of OPCRATORS communicating via DATA STREAMS. The formal

computational model is an augmented graph:

G = (V.E,T(v),C(v))

where:
® Vs the set of vertices
e [ is the set of edges
¢ T{v)is the maximum execution time for cach vertex

* C(v) is the set of control constraints for cach vertex v

Each vertex represents an operator while each edge represents a data
stream. Components V, E, and T(v) arc called the ENIIANCLED DATA FLOW
DIAGRAM. [Ref. 19: p. 1]
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‘ 2. DMajor PSDL Language Structures
;: a. Operators
b In PSDL, Operators may be cither atoniic or composite. Composite oper-
(\. ators can be decomposed into two or more operaiors, each of which may be composite .
:”'{ or atomic. Atomic operators cannot be decomposed into simpler components. This is
is a colloquial rather than formal distinction. [t envisions a hierarchical breakdown of the
. svstem into logical components which are as simple as possible without becoming trivial.
:': No special rules for decomposition are imposed. This distinction allows the modeling
2; of hicerarchically structured programs as sets of operators. Operators at higher levels in
ke the program structure are composite while those at the lowest level of the program
iy structure become the atomic operators. PSDL can therefore be used to support top
", down design strategies.
‘w A second classification considers that operators may be data driven or pe-
i riodic. Under this schema, the liring of a data driven operator is accomplished due to
?“:E the presence of data in its input data streamy(s), while the firing of a periodic operator is
-E;; dependent upon timing constraints which must be met during program operation. The
& data driven operator allows the modeling of systems which utilize data flow as a means
-4 of control instead of the more traditional timing control in real-time systems. In either
:"- case, when an operator fires, it reads one data object from each of its input streams and
.:'_: writes, at most, on object to each of its output streams.
[} A third classification of operators is allowed. An operator may be cither a
\:E‘ function or a state machine. This description relates to the values output [rom the op-
z_: erator. The output value of the [unction type operator is dependent solely on the cur-
'Z:': rent set of values present on the input streams to the operator. The output of the state
o machine type depends, r.ot only upon the current set of input valucs, but also on the
, values of a finite number of state variables internal to the operator. Figure 9 on page
, 31 illustrates several aspects of the PSDL operator concept.
r: Each of the preceding operator classilications can be directly related to ex-
:3: isting concepts in Ada. Ada supports both top down and bottom up design strategies
zj in a hierarchical, modular program structure. PSDL ailows the description of each
tj module as an operator. In Figure 9 on page 31 A is an operator with one input stream,
I‘
I'
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Top level OPERATOR
as a function

> A >

1 a2, BB o CC —<» DD e |,

Second level
decomposition

CCis a STATE MACHINE

Figure 9. Various types of PSDL operators

a. and one output stream, e. [n this case A is a function since no state variables are seen.
A is also a composite operator which can be decomposed into three operators, BB, CC.
and DD which are atomic operators (they are not or cannot be Jdecomposed further).
In this represenration, CC is a state machine, since it has state variable, found on data
stream d, which is combined with the value on its input stream, b, to generate the output
value on data stream c.

At the lower level of decomposition, A still exists, but is represented in

greater detail by the three atomic operators and their associated data streams. The input

31
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’
data stream to BB is a’. The data type and value found on a’ will be the same du.a type E.
and value found on a, and similarly for e and ¢’. This structure is analogous to an Ada ':-
*u
program being composed of one or more subprograms. [For cxample, we might use an i.:
Ada procedure to represent A. This procedure might contain three Ada subprograms :E
»
(functions or procedures) which are called within it to implement A. [Procedure DD '
would produce value which would be passed to A on an output parameter of DD. This — _"
would be passed out of A as a value on an output parameter of A. In Ada, each of the ?-.:
opcrators could be separately compiled. BB, CC, and DD could be written {irst, then A ::
written and compiled (bottom up), or the specification of A could be written and com- ’
piled, then the specifications of BB, CC, and DD, and finally the implementation code !‘
for each cof the operators could be written (a combination of top down and bottom up).
In r'ne model shown in Figure 9 on page 31, the arrows represent duta "
streams. Each of these is labeled with a lower case letter. The label is a name for the o
data stream. PSDL data streams can carry two types of data values. The first type may
considered the normal type. Normal type data can be any abstract data type. It is
characterized by being immutable and no global representations are allowed. This (ca- ,
ture prevents coupling problems within the prototype where operators communicate via :5
.
shared data. State variables for an operator are specifically local to the operator and can 5‘;
/
only be changed internal to their own operator. This also prevents coupling problems :h
in the prototype design. PSDL uses the immutable subset of built in Ada tvpes, plus ‘
»
user defined types, and the special types TIMER and EXCEPTION. ','.‘
The sccond type of data which can be transmitted are tokens representing E '
exception conditions. This is the PSDL tvpe EXCEPTION and corresponds to the Ada '.;
exception construct. Thus, PSDL uses the Ada approach of representation hiding and E
data abstraction in program design. It is much simpler to use PSDL than to use Ada '5_

directly. Tor the translator, all variables, including user defined types, will be placed into
an Ada package. The resulting Ada program will emplov the with usc construct (rom

Ada to make these variables available to the program.
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b. Duta Stireains

In PSDL, data streams represent a communication link between exactly two

operators. One operator is the producer of the data while the other is the consumer of

the data. There are two types of PSDL data streams. One is the DATA FLOW
STREAM the other is the SAMPLED STREAM. The DATA FLOW STRLEAM can
be thought of as a first in first out (F1FO) queue capable of holding, at most, one data
value. This data value may be used one time by the consumer operator. It mayv not be
overwritten by the producer. In effect, this stream guarantees deliver of the data value,
and guarantees that each individual data value will be read once and only once. The
second type queue can also be thought of as a quecue of length one. In this case, (the
sampled stream), delivery of an individual data value is not guaranteed. The data value
may be overwritten by the producer before the consumer rcads it, or may be rcad mul-
tiple times by the consumer, or not at all. The choice of data stream is dependent upon
the control conditions specified for the operator.
c. Operator Control Techniques

Two types of control are allowed in PSDL. The first is periodic. This is a
common form of operator control in which operators are fired by some regular schedule.
This form of control is supported in PSDL by several constructs. The primary construct
1s PERIOD followed by a time value. The SS in the ESS will recognize the 'ERIOD
token and will utilize the time value supplied to gencrate an Ada schedule program
which will invoke the Ada procedure representing the PSDL operator. The periodic
operator must fire sometime between the beginning of the period and some deadline
which defaults to the end of the period [Ref. 19: p. 17]. Thus, PERIOD is an upper
bound on the length of time allowed between any two firings of a given opecrator. This
is an explicit period.

1t is possible to arrive at an implicit period. Such an implicit period would
be known as an equivalent firing period.  An operator for which an cquivalent firing
period would be calculated by the SS would not contain the . PERIOD token. It might
inherit a period from a higher level of decomposition in a hierarchical prototype or it
might contain PSDL rokens for MAXIMUM EXECUTION TIME (MET), MAXI-
MUM RESPONSE TIME (MRT), or MINIMUM CALLING PERIOD (MCP) which

33

e e e e e T e e L T N R U S I T T Y S e
RPN I .'..-,‘.'\.' ERr A S A et e e e et e e A e S e

+ Lt e . N o -
(G PUD O RN W TR TN, W Pl YOS WO, I, Y0, Ry ¥

LRI SN

RSy

FACP )

e

'~

P

"

PN

et -..'l-l"l" i

’

PR A

» L

.
-
-
o




f would result in the SS calculating an equivalent firing period for the operator. MET is
an upper bound on the length of tiine which may elapse from the beginning of exccution

of a module to the end of the execution of that module {Ref. 19: p. 20. MET mav be

i~ applied to all operator types. o
‘: MRT has two different interpretations. The first applies to periodic opera- ‘
:: tors. In this case, MRT is an upper bound on the time from the beginning of a period ’ :
' and the time when the last data has been output onto the output stream of the operator
j [Ref. 19: p. 20]. The second case for MRT applies to a class of operators known as .
E Sporadic operators. Sporadic operators lack an explicit PERIOD. Sporadic operators
c are triggered by the arrival of data on the input streams of an operator (or set of data
> streams ‘or the NATURAL DATA FLOW (NDF)) [Ref. 19: p. 20}. NDF is a form P
‘ of control dependent on the (low of data through the prototype to cause the firing of ;
' operators. [For the Sporadic operator, MRT is an upper bound on the clapsed time from E
> the arrival of new data on the input streams to the operator and the time when the last ;
N data value is placed on the output stream of the operator in response to the arrival of :
l: the new data values. MCP is a lower bound on the elapsed time allowed between the ‘;
: arrival of one set of values on the input streams of an operator and the arrival of the L
- next set of values on the input strcams. For SPORADIC operators, if MRT is used,
E then MCP must also be used [Ref. 19: p. 20].
: For sporadic operator control PER[OD is not specitied. The SS calculates q
an equivalent firing period if the operators have the MET token. It uses the information
N calculated to generate a calling schedule for program operation just as SS would if the ;
:" program used the PERIOD token and were therefore periodically controlled. If the ‘
2 operator is sporadic and does not contain MET then the S$§ will conduct a topological
:: sort of the operators to determine a calling schedule In Figure 10 on page 35 we sce the 3
'; application of the topological sort to a set of operators. The information required for A
x the sort is found in the link construct of PSDL which is part of the GRAPII token. N
> The acyclic digraph is generated from the link information. In the case of Figure 10 2
; on page 35 no MET information is supplicd in the link construct. In Figure Ul on page '
> 36 MLT information is supplied within the link construct. The resulting schedule for '
A cach sct of operators is the same.
s 3
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link statement cofresponding to
above acyclic digraph - no MET are
included for the operators

a1l > 2

b.2 > 3

c3 > 4

d >4
_ o= y

possible schedule resulting from a topological sort

1,2,3,4

Figure 10.  Acyclic Digraph

NDF control of sporadic operators is signified by the PSDL token TRIG-
GERED BY. This token will be qualified by either the additional token ALL or SOME.
TRIGGERED BY ALL indicates that an operator is to be fired when new data values
have arrived on all the input streams to the operator. TRIGGERED BY SOME implies
that the operator will be fired by the arrival of a new data value on any one of the input
streams to the operator. Figure 12 on page 37 illustrates these two different con-

structions. Note that the designer must specify which input streams the TRIGGERED
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b.2:4 -> 3
¢35 -> 4

d.1:5 -> 4

N y

possible schedule for abov @ AUGMENTED ACYCLIC DIGRAPH

1,2,3,4

Figure 11. Augmented Acyclic Digraph

BY ALL/SOME construction refers to. He may specify a proper subset of the input
streams in either case. In this way, if an operator has multiple input streams, but only
a few of them are critical to the firing of the operator, the designer may so specify. NDF
1s not normally combined with periodic control. The application of timing control to a
model using NDi" is allowed. The MRT and the MCP tokens may be used with the

NDF form of control among SPORADIC operators.
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triggered by all d,fh

triggered by some r

(no triggered by token)

12.  “Triggered By” construction in PSDL

Figure 13 on page 38 illustrates the combination of Sporadic and Periodic
control. In this case, a conflict develops between the two schedules developed on the
basis of:

. Topological sort

2. Periodicity constraints
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Figure 13. Combination of Periodic and Sporadic Operators >,
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The SS would develop a schedule based on the periods specified. [t would \
also develop a topological sort. It would compare the two schedules and would recog- :
o
nize that they do not match and might fail. It would nevertheless allow the program to N
. . . : N
be compiled and run on the basis of the periodic schedule which would fail when C at- >
. . C e . )
tempts to fire a second time before B has fired a second time. This indicates a flaw in :
| the design of the prototype and would require the designer to intervene to correct the ()
20
problem. 5 ‘
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It is not the purpose of this paper to discuss in detail the development of
schedules from the PSDL specification. The aini is to demonstrate that PSDL has a
puwerlul set of lunguage coustrucuons to deal with real-time constraints in soltware
systems. PSDL offers a variety ol means to control the opecration of a real-time systems.
[t is necessary to discuss the forms of control available so that certain implementation
aspects for the translator can be introduced. It is also important to recognize that Ada
1s not nearly so flexible in describing real-time constraints as is PSDL.

Conditional firing of operators can be accomplished by the addition of input
or output predicates in the PSDL specification. Referring to Figure 9 on page 31, the
designer might specify one of the following:

¢ OPERATOR A TRIGGERED BY ALL a IF a:critical
¢ OPERATOR CC TRIGGERED BY ALL b IF b:NORMAL AND d:critical

This illustrates the use of an input predicate. The triggering condition acts
as a guard for the operator. The conditional can be applied to both Sporadic and Peri-
odic operators. A Periodic operator would fire only if the input predicate were true. If
it were not true, the Periodic operator would read the inputs without firing. The input
conditional can depend only on the input valucs to the operator and any TIMER values.

An example of an output control would be:
OPERATOR DD OUTPUT x IF x > 100

This functions as if we had an explicit, conditionally executed filter operator
following it [Ref. 19: p. 19]. The output guard provides a convenience to the designer
but could be simulated by adding another operator to the prototype with an input con-
dition on its firing.

d. Timer

TIMER is a PSDL construct which is uscful in the development of real-tiine
systems. A timer is an abstract state machine. In PSDL it is somewhat like a stopwatch.
It has the primitive operations of START, STOP, RUN, and RESET. It is uscd for such

things as measuring the length of time between two events, or the length of time the
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system or an operator has remained in a particular state. TIMER does not function in
the same way as a clock construct for an operating svstem. It does not provide direct
controi vt vperator firing, but can be uscd as a vaiue for « PSVL input or output con-
ditional to act as a guard to the {iring of an operator. [t is primarily provided to coliect
statistics about the prototype system.
e. Exception
[t was noted above that PSDL supports both normal and EXCEPTION
data types. The PSDL EXCEPTION is a built in tvpe. [t can be transnutted on any
data stream as a data value. It can be suppressed by the use of input or output condi-
tionals. It can be handled in PSDL or in Ada. Some possible operations for the PSDL
EXCEPTION are
® to create an exception with a given name
® to detect if a value on a data stream is
an exception with a given name

normal (not an exception) [Ref. 19: p. 14]

Although the PSDL exception is a data type and the Ada EXCEPTION is
not, the Ada EXCEPTION can be used to implement and handle PSDL EXCEPTION
types very conveniently. The major benefit from treating EXCEPTION as a data type
in PSDL is abstraction. By this abstract construction, a unified means of handling all
exceptions throughout the prototyping process is created [Ref. 19: p. 14]. Since all ex-
ceptions arc handled the same way, there is no need for special constructions to handle
each specific case. Thus construction of prototypes is simplified, and another step is
taken toward automation of the prototyping process. This also simplifies translation of
the exception condition into Ada. A gencric exception handler can be created in Ada
and instantiated by the translator as nceded during translation. The abstraction eascs
the job of the prototype designer, which is the whole point of a computered aided pro-

totyping systeni.
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C. ADA AND PSDL
I. Ada and Real-Time Systems Constraints
a. Difficult Direct Implementation of Real-Time Constraints in Ada

The Ada implementation of such aspects of real-time systems as PERIOD.,
MET, MCP, MRT, and TIMER is not trivial. Ada DELAY by itself has no upper
bound but is a lower bound on the delay implied. The Ada DELAY and SCLECT
constructs cannot be used to implement these performance constraints directly for a
svstem of operators. The use of the type DURATION allows the approximation of an
interval in a loop construct but it is not as flexible as needed. The use of TASKS in Ada
provides more capability through the use of conditional entry calls. The problem with
these constructs is that they require a good deal of effort on the part of the programmer
to implement, and the program is operating at the mercy of the Ada run-time svstem.
The degree of effort required to implement these constructs directly in Ada is out of
proportion with the aims of the rapid prototyping methodology. A more abstract and
direct syntax is required to specifv hard, real-time constraints which will make con-
struction and demonstration of prototypes possible. If the designer is required to invest
nearly as much effort into the creation of the prototype as the development of the sys-
tem itself, there is no advantage to prototyping. Furthermore, the Ada run-time system
will not guarantce that the prototype design behaves in exactly the same mauner as
specified.  The purpose of the SS and the DS in CAPS, is to ensure that the prototype
functions within the real-time constraints applied to the design. Barring errors in design,
the feasibility of such aspects of the svstem as control flow, order of firing of program
modules, time behavior, and /0O formats can be demonstrated with CADPS. The LSS,
[rces the designer from the implementation effort required in Ada by automatically
generating executable code in Ada, and by automatically generating control code in the
form of Static and Dynamic schedules which enlorce control and timing behavior.
Therefore, PSDL supports deveipopment of large and embedded Ada programs dircctly

and easily.
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b. Aduain Support of The CAPS Environment

Ada is most suitable for the development of CAPS for several reasons:

s A
]

Ada is the language mandated for development of embedded and real-time systenis ‘
for DOD

'l
®

Ada provides constructs which can be used to implement more abstract timing be-
5 havior.
Y

b * Ada constructs can be used in a multiprocessor environment
' e .Ada provides simple exception handling facilities
x s the GENERIC feature in Ada provides a simple means to implement autemated
, prototype construction
L t
e . i . '
! 2. Implementation of The PSDL Model in Ada
N At this point several design implementation aspect: of the Translator (TL) por-
K
N tion of ESS will be presented.
5
¥ a. Operator
) - . . .
The OPERATOR construction of PSDL can be implemented by producing
.~
> an Ada procedure. This procedure would contain code to implement any PSDL. input
Ny ... . .
Ny or output conditional statements. It would also contzin code to check the validity and
L, i
. availability of data for NDF control. Before presenting an example of this construction .
o it will be necessary to develop the implementation of the PSDL data streams. 3
N
s b. Data Streams
f‘..
N A PSDL data stream may be thought of as a simple queue of length one.
i
Y Appendix C, part A, illustrutes the construction of a simple queue in Ada. Itis a pro- '
5' cedure. With some minor modification, the queue can be made generic. This is ac-
Ny compliished by enclosing the procedure in a package and adding the Ada GENERIC
_:: part. An Ada private type is declared in the generic part. This private type allows the ]
o
- passing of any data type into the queue simply by declaring the type description at the
f, :1 point of generic instantiation. Thus, a generic queue is created which can be used at anv
Y yoint where a data stream is needed, by the simple use of the Ada generic instantiation.
X ) p g
9 J . . . . . . . 1
o This technique is illustrated in Appendix C, part A. ’
o r1; Generic Buffer Task. Recall that there are two different type Jdata
v
:3' strecams in the PSDL schema. One is a IFIFO queue while the other is the sampled
~ . . .
~ stream. Therefore, two different generic queue models are required. One of these
“~
)
‘l
) 42
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reccives and transmits data without condition. This is the sampled stream, and will be A '-
referred to as a simple queue. Lach data value in the simple queue may either be read f
many tizaes or net at all. The second queue model will have a Boolean (lag indicating ) .
whether or not it has been written since the last read operation or whether it has been :
:
read since the last write operation. This is the FIFO quecue used for NDF control. The .f
Boolcan flag is necessary since delivery at least once, but only once, of each data value o
sent through the queue is required in natural data {low. If there is a violation of the
FIFO rule, then the Boolean flag will result in the queue raising an exception. There ,
arc two possible exceptions. One will be identified as Underflow, and the other as :«J_
Overflow. Underflow will be raised if the consumer operator attempts to read the queue ' o
before it has been updated by the producer operator. Overflow will be raised when the ' A
producer attempts to write to the queue before the consumer has read the previcus data b :
value. A ;
The translator must have some basis to select the appropriate queue !_\
for a given data stream. 1f an operator contains the TRIGGLERED BY ALL tokens then ::"
FIFO qucues will be selected for the streams listed following the ALL token. If the (.Zi
operator contains the TRIGGERED BY SOME tokens then simple queucs will be se- rL
lected for the data streams. A third condition is if the operator contains no TRIG-
GLERED BY tokens. In this case simple queues will be selected. For example, in ‘_,
[igure 12 on page 37, operator T has four input streams. The specilication for T is, _:
TRIGGERED BY ALL d,f,h. The translator will select FIFO queucs for streams d,f, and L
h. Stream g will be a simple queue. In the same figure, operator P has four input ’
streams. The specification for P is, TRIGGERED BY SOME r. In this case all data _:
strecams will be simple. Again in Figure 12 on page 37, operator FF has two input ;.'
streams. The specification for FF lacks a TRIGGERED BY token. Thercfore, all the ‘
streams are simple streams. Thus, if the opcrator specilication lacks the TRIGGERED E
BY token, or contains the SOME token, the streams will be simple. If a stream is not .:,
listed in the ALL specification it will be simple. Only when the operator contains the ';
ALL token will a FIFO queue be selected. Note that it is the triggering conditions for "‘
the consumer operator that determine the type data streani(s) that exist between any two p

operators.
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‘: Thus far, the data streams are modeled as a generic package con-

¥

e taining a queue procedure ia Ada. This construction is not suflicient. The SS and DS

\

have generaced a scheduie for the time critical operators and this schedule 1s enforced to

:.. ensure real-time constraints are met. Some operators do not have time critical con- )
‘: straints. These operators are called into the empty or excess time in the worst case
EEE schedule for the time critical opcrators. It is possible that a time critical operator is the 5
a consumer of data from a non-time critical operator. The tiune critical operator has pri- (
\ ority and is scheduled to run by the SS on some repetitive cvcle. The non-time critical /
\ operator is fired, as convenient for the DS, in the excess time in the main schedule. ;
": Suppose a non-time critical operator is called and is attempting to write to the data
stream, when it is interrupted by the DS in order to run a time critical operator. Also
;‘\_“ suppose that the time critical opcerator is the consumer for the data from the non-time
: critical operator. When the consumer attempts to read the queue, the results will be '
3
- uncertain.
:: This difficulty can be overcome by making the generic queue into an
:i Ada task. This task will be called a buffer task. The task is then enclosed as a gencric
: package 'w' hich can Lc generically instantiated as before. The difference is that the pro-
ducer and consumer operators will use entry calls to write to or read from the buffer. ;
i In this way, once the bufler task is called, whatever operation is taking place on the
:‘, butler must be allcwed to complete belore an interrupt can take place. The operation X
N time for any buffer task should be very short, so there should be little time penalty to ‘
,:: the scheduled operation of the program. On the other hand, buffer operation is pro- 4
:‘ tected from interruption and the operators arc unlikely to get uncertain results {rom j
. reading them. Appendix C, part B, contains a listing for the Ada code to implement the
9 two types of buller tasks, SAMPLED STREAM and FIT'O.
:' 72, Buffer Task Selection. Iow does a data driven operator know that
E: the data stream (bufTer) has new data, and that 1t should therefore fire? The butler al-
- ready contains a Boolean flag to indicate that it has been updated (either written to or
3 read {rom). Ilowever, now that it is a task, an entry call must be made to access the : f
f Boolean flag. After finding the state of the {lag, the consumer operator would then need :
E to execute a task entry to access the actual data in the bulfer. This would be
Y 44
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inconvenient. A simpler method would be to apply a similar Boolean flag to each pro-
ducer operator of a NDF data stream. This would be an Ada in’out parameter to the
producer procedure. The consumer procedure would incorporate a conditional guard to
test the state of the Boolean in/out parameter of the producer. If the condition of the
flag indicated that the producer has executed a write operation to the bufler since last
read, the consumer would reset the variable to the state indicating that the data has not
been updated and would then exccute an entry call to the buffer(s) in order to (ire itseil.

13, Buffer Length Selection. It may be asked why a builer length of size
one has been chosen to implement all buflers. The choice of buffer length is arbitrary
In any case. Figure 13 on page 38 illustrates the source of the problem. Supposc a de-
signer builds a system which contains both periodicity constraiints and data flow control
as in the figure. As previously discussed, the SS will generate a schedule based on
periodicity and will also conduct a topological sort for control based on NDF. If the
two schedules happen to match then the system will operate. If they do not, then the
svstem 1s likely to fail. The SS will still allow the compilation and operation of the
program based on the periodicity constraints. This will allow the designer to see the
failure and decide on necessary changes and design alterations to make the program
work. Figure 13 on page 38 shows the failure of the program will occur on the sccond
time C attempts to fire. In this case buffer length has no effect on the operation or
failure of the program. Ilowever, it is possible that a combination of various bufler
lengths, periodicity constraints, and NDF constraints might operate correctly for some
length of time before failing.

Figure 14 on page 46 shows a case where operation of the bufler is
uncertain in the presence of both periodicity and NDF constraints. In this case, the [act
that we have chosen a bufler of length one cnsures that very little runtime will be re-
quired to reveal the instability of this design. Since one objective of the CAPS archi-
tecture is to save development time, it is important to reveal errors in design quickly in
testing. By sclecting buffers of length one throughout the prototype, we ensurc that
(lawed designs, such as the one in Figure 13 on page 38 and Figure 14 on page 46 are
revealed afier a very short amount of run time. In general, a {lawed design will fail

eventually no matter what length buffer is chosen. Since the buffer length is an arbitrary
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period = 15 period = 20

calling schedule for C

T

1 l | ]
0 20 40 60

v

calling schedule for B

I

| ! ] ]
0 18 30 45 60

v

B writes b at 15 - C reads b at 20
B writes b at 30 - C reads b at 40
B writes b at 45 -

now B attempts to write b at 60 -
and C attempts to read b at 60 -
success or failure of this operation is
uncertain - failure is likely and the
design is poor

Figure 14, Uncertain buffer operation

choice, it is better in the CAPS to ensure rapid failure of poor designs. A bufler length
of one will ensure this selection.

74,  Buffer Selection Conflicts. Another problem which arises in buffer
sclection is illustrated in Figure 9 on page 31. In this case we have the decomposition
of an operator into three lower level operators. The designer will enter a specification
for both the top- level operator A and for the lower level operators BB, CC, and DD.
Suppose operator A includes the tokens TRIGCERED BY ALL a. Also suppose that
operator BB does not contain the TRIGGERED BY ALL tokens. When the TL selects

46

~

vy m At athtpmA s
AN e ey ;_j'.a‘f_‘f,\(lk_q._‘f._q’.,-'_._ .

o

~

OO SR L A

2

v o 2 ®_ o o _a_>+




A, 27,

e

- o
3 RIIAI;

St S WL

O]

5,

'n.{l. - ‘.’N .

RN ¥ REREER

"'4 'A&‘A’. P A

X

a'y

.
LI

b

NN

“ NS

»
ax N

t s 4 2 U

B

.' 'I "'

o

"

)

S

NN

A Y
B .

a buffer task for A, it will instantiate a FIFO buffer task to implement a. For BB, it
would select a sampled stream task to implement a’. Although, a and a’ carry the samc
data, and they have not been implemented with the same tvpe buffer. The TL docs not
check inheritance rules. In operation data would be placed onto a and would then be
passed to a2’ and into BB. The results of this translation will be uncertain. It mayv
present no difficulty or may behave erraticallv. The user must prevent this type error
by ensuring that operators which result {rom the decomposition of higher level eperators
have the same triggering conditions at the mput in order to prevent the bufler mismatch
iust demonstrated.  This difficulty only arises for lower level bullers which mirror the
input buffers of the highest level operator of which they are a part. This is true because
the type bufler required at any point in the system is determined by the triggering con-
ditions of a consumer operator. Therefore, decomposition rules do not aflect the spec-
ification requirements of operators CC and DD in Figure 9 on page 31. IHowever, iff A
is TRIGGERED BY ALL a, then BB must bc TRIGGERED BY ALL a’. Itis a rule
which the designer must enforce at this point. A utility similar to the C language lint,
could be developed to check for this type inconsistency and incorporated into the LSS
as an automatic part of the prototype translation, compilation, and export [acility.

/5)  The State Buffer. A [inal difficulty in data stream implcmentation is
that of PSDL state variables, designated by the token STATES INITIALLY. Each state
variabie will have its own bufler task. An example is scen in Figure 9 on page 31.
Operator CC is a state machine. It has a state variable which is transmitted along bufler
task d. The value of the data type traveling along d must have some initial value. That
value is found in the STATES INITIALLY statement in PSDL. To insure the correct
initial value for the stute variables in the program, bufler task d must be loaded with the
correct value prior running the prototype. An Ada procedure called PRELOAD will be
produced by the TL for all PSDL prototypes. It will contain a scries of statements to
put the correct initial values into the appropriate bufler tasks. If there are no state
variables in the program, the procedure will simply be empty. The SS§ will alwavs call
PRELOAD belore the execution of any schedule it creates {or the prototrve. The pre-

loading procedure will not be part of the schedule proper.
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It will run one time only to initialize the state buffers and will not be run again unless R

~

the prototvpe program is restarted {rom the beginning. by
c. User Declured Data Abstractions ,
Already mentioned is the fact that all user declared types will be placed in ‘ by
: an Ada package which will be used throughout the program. The listing for such a .
- ¥
A package is found in Appendix B, part C. This method allows the use of private types in b
. the generic bufler task. At instantiation, the particular type variable to be sent through w
the bufler is declared. The actual description of the type is in the variable package. This '\f
package requires only an Ada specification part since it Jdoes not implement anvthing :

itself. In addition to user declared types, all other variables which would appear in the '
specification part of the Ada umplementation will be placed in this same package. This
» technique is a useful Ada design tactic. It is especially useful in programs where ranges, :;tf
intervals, delta values, or constants need to be assigned to variables, types, or subtypes. .
It insures that when variables need to be changed in a program, they can be found (

quickly and changed. There is no need to worry that a particular instance of the variable s

was overlooked somewhere in the program. In real-time svstems such assignments of ;.:‘

ranges, delta values, and constants may be seen to be quite common. [or cxample, in E
. an engineering plant control systein, fixed point numbers might be emploved to describe ::
temperature measurements. These would have a particular delta value, perhaps .1 de- J‘
4 gree centigrade. The accuracy required nught result {rom engincering considerations ':
' : e )
| such as available sensor accuracy ur the criticality of the system. If the program were ;
written to accept data from a sensor of .1 degree centigrade and a sensor was needed and :

eventually developed which was accurate to .01 degree centigrade, the program would .
_ have to be modified to reflect the new delta value of .01. If the package technique had ::
been used in program development, the effort required for the change would be minunal. ;
! A single point in the program would be adjusted and the modilication would be com- .
plete. Lacking the package technique, the eatire program listing would have to be ex- ’ :::
amined to ensurc a correct change. CAPS is thus developing Ada code which is casily f':
maintained and modified. TN
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d. Timer .

The TIMER module must be implemented. The purpose of TIMER 1s to .

A

measure elapsed time between two events, the length of time an operator has been in 2 )
l'.
particular state, or to act as a conditional guard for operator firing. The four primitive ll
. . - . o™
operations for the timer are START, STOP, RESLT, and READ. It will use the Ada "
. W
standard package CALENDAR to access the system clock. The timer will have a "
) L
Boolean run switch. ok,
-
At START, the Boolean run switch will be set to true, the system clock read A

Ky

and the value of the reading stored as the initial starting point. At somc time later a i
READ is performed. The system clock will be read and the value of the initial reading y
subtracted {rom it to calculate the elapsed time. The initial value will not be changed. e
. . - . %
Actual clock time is not output. Elapsed time is output. At STOP, the system clock is ¢
read and the value stored in a simple array. The initial actual clock time is not output. ]
Elapsed time is output. At STOP, the system clock is read and the initial reading is 'L
.\‘
subtracted from the reading at STOP and the value output as the TIMER value. The
<
reading thus obtained is stored as the grand total time clapsed. At a subscquent NS
START, the system clock will be read and written over the old value. The grand total , '

will not be disturbed. At another STOP, the new elapsed time will be added to the grand

total and the will be output as the elapsed time. The RESLET operation will stop the

timer and rcturn all timer values to the zero state. TIMER will be an Ada generic

package. It can be instantiated wherever needed in the prototype very easily. An ex-

ample of an Ada package to implement TIMER is found in Appendix C, part C.

3. Advantages of The Ada Implementation of PSDL Constructs
The CAPS utilizes the relatively simple PSDL design and specification language

to describe prototypes. It creates Ada source code for an operational prototype which

o - -

can be compiled and run tested. [t utilizes an automated translation facility to produce

5.{‘. A Y #ﬁ.tanrnr'\'f' o, l&t l*\‘l-

this code. It takes advantage of the powcrful generic construct in Ada to simplify

translation. The resulting code uses packaging of data types to simplify translation and L

program maintenance. Use of private types supnorts representation hiding. Since PSDL :-_:

data types are immutable, it is necessary to utilize a strictly typed language to implenent &
them. Otherwise the protection against unpredictable side cffecting afTorded by the ’
-

o
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immutable PSDL data types might be lost in translation. Ada provides the strong type

checking required. A similar observation can be made regarding the PSDL prohibition
against global variables. CAPS combines the powerful features of Ada and 'SDL to

provide an effective tool to support the rapid prototvping methodology.

D. TRANSLATOR DESIGN AND CONSTRUCTION
I. The KODIYAK System

A few words should be said regarding the design and construction of the trans-
lator itself. The translator is created using an automated translator generator called
KODIYAK. KODIYAK was developed by Robert Herndon at the University of
Minnesota as a doctoral dissertation. [Ref. 24] It is available as a research tool and is
quite effective. The system is based on Knuth's work in attribute grammars. [t utilizes
a version of Jalili's algorithm to evaluate the semantic tree it creates when generating the
translator. The tool incorporates a file called K as a pre-processor to the LEX
[Ref. 27] and Yacc [Ref. 28] tools in the UNIX operating system.

The process of translator production and usage is illustrated in Figure 15 on
page 51. To produce a translator with KODIYAK, the user must create a source file.
This file contains a listing of the terminal and non-terminal tokens of the source lan-
guage to be translated. It also contains a listing of the valid attributes which each token
may take on, as well as any precedence relationships which may be required to properly
cvaluate ambiguous cases in the grammar. Finally, the {ile contains a listing of attribute
equations. These equations describe the relationship between the source language (in
this case PSDL) and the target language (in this case Ada). The translator generator
system, KODIYAK, utilizes these equations to produce a translator in executable C
code. The translator thus created is an executable program. By running this program
with a text [ile in the source language as input, an output file is created which contains
the equivalent code in the target language. A complete listing of the translator gencrator

source file for the PSDL to Ada translater is found in Appendix D.
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V. GENERAL APPLICABILITY TO TELECOMMUNICATIONS
SOFTWARE SYSTLEMS

What is the relationship of this research to Naval telecommunications systems and
software? Current DOD policy indicates that software for embedded computing systems
will be written in Ada or converted to Ada, although the application of this policy is left
to the individual services [Ref. 29 p. 71-72; Ref. 30]. Embedded systems are those
computers which form an integral part of a larger system, such as a comununications
switching processor, a missile guidance system, or a manufacturing process control
computer [Ref. 12 p. 3]. Naval telecommunications systems are emnbedded systems and
therefore are subject to this policy. No current Naval telecommunication system is
written in Ada. Naval Data Automation Command (NAVDAC) has expressed an in-
terest in the development of soltware tools and techniques to improve productivity in the
maintenance and production of Navy software systems [Ref. 31]. This thesis addresses
the creation of a software tool designed to improve the productivity level and efliciency
with which Ada software can be produced. It also demonstrates, coincidentally, the
application of several existing software engineering tools and techniques which can be
used to address the conversion to Ada or the development of software components for

future systems.

A. SOME CURRENT NAVAL TELECOMMUNICATIONS SYSTEMS

Table 1 on page 53 [Ref. 32] summarizes some information regarding several cur-
rent Navy telecommunicaticns systems. These are the Common User Digital Informa-
ton Exchange System (CUDIXS) and the Naval Modular Automated Communications
Svstem (NAVMACS). The annual maintenance cost figure cited is for the softwarc
system in each case. No hardwarc maintenance costs are included. The maintenance
costs for NAVMACS V5 and V3a is unknown as the systems are still undergoing de-
velopment. Not listed in the table, is the development costs for the systems. Numcrous
government and private laboratories and corporations participated in the developuient

of these systems over an extended period so that the development costs are not casily
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h Table {. A SUMMARY OF SOME CHARACTERISTICS OF CURRENT NAVY
TELECOMMUNICATIONS SYSTEMS AND THEIR SOFTWARE
' NAVMACS Family '
! CUDIXS Vi V2 V3 V5/5a W
t
!
Annual Maintenance Cost S500K S200K  S250K  S500K  unknown Ly
K 10C 1975 NOV 79 APR SO DECT76 (1) ;
4 Required Memory 64K 64K 64K 128K (2) 4
Code Size (Lines) 120K 49K 54K 90K (3) @
Language ULTRA-16, the 16 bit assembler code for the 73
AN;/UYK-20 computer which is the basic hardware unit g
for these systems b
-
Opcrating Systemn none nomne none MOS (4) (5)
; Constraints CUDIXS must maintain precise timing to properly L3
operate within the receive, transmit windows required ¢
by link protocols. NAVMACS family, due to heavy %
R loading of the system, concentrates on etficient use of A
y system resources such as central processor unit and [;O '
,_ capacity. o
3 3
X (1) NAVMACS V3 is being developed in two phases IOC for Phase A was JUL 83. ’
) [OC for Phase B was JUL 86. 10OC for V5a is expected to be OCT 88. *
K (2) NAVMACS V3 is a three computer svstem. Main computer memory is 256K. bt
[t can operate in degraded mode in 192K, The remaining computers require J
: 04K. One will normally have 256K for fallback purposes. N
oy
(3) Code size by lines does not accurately reflect the presence of comments and the i
extensive usc of macro instruction statements. Current size is 309,000 (decimal) Y
! 16-bit words.
; (4) MOS = Modular Operating System
(53) NAVMACS Operating System (IOC). This is a highly modified and enhanced
version of the MOS used in the V3. iy
-4
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determined. An examination of the initial operational capability (10C) dates for the
systems makes it clear that Ada was not a feusible choice for the development of the
software for these systems, since Ada was not standardized until 1983 {Ref. 33]. Itis
also clear that there are hardware limitations on the size of code which can be tolerated,
due to the small memory capacities available in the AN, UYK-20 computer which is the
central processor for all the systems listed. Note that the code is very large in terms of
number of instructiops (or line count) albeit very compact, owing to the use of assem-
bler language. NAVMACS V35 and V3a use up to three AN, UYK-20 computcrs, while
CUDIXS and NAVMACS V1, V2, and V3 are single processor units. The various
versions of the NAVMACS family differ in the variety and quantity of capabilitics and
services provided to users by the system. The V1 and V2 are typically found on f.igate
and destroyer size ships, while the V3 is reserved for cruisers, large amphibious ships,
large supply ships, and flag configured ships. NAVMACS V5 is found only on carriers
and large command and control ships.

The software for all systems is written in asscmbler language (ULTRA-16, the as-
sembler language native to the AN;UYK-20 computer). As many commmon clements of
the developed assembler code as possible have been used among all the svstems
[Ref. 32 encl. 3]. The software for the V5 has also been developed to operate on the
AN/UYK-44 computer [Ref. 32: encl. 3}.

B. SOME PROPOSED NAVMACS FOLLOW ON SYSTEMS

There is currently no formally accepted follow on to these systems. Initiatives to
enhance and improve NAVMACS exist. Two approaches to proposals for follow on to
NAVMACS will be bricfly presented which will serve to illustrate possible applications
for CAPS. Some possible opportunities for the application of tools and techniqgues on
which CAPS is built will also be suggested.

I. NAVMACS Model 11

There is an idea for a follow on system called NAVMACS Model 11 (afterward

referred to as Model ) [Ref. 34]. Table 2 on page 56 is a listing of typical services
found in current NAVMACS systems and the proposed additional scrvices for

NAVMACS Model I [Ref. 34: pp. 15-16]. The Model II proposal envisions a single
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type of computer and software package which could be used in many different applica-

tions by changing the peripheral suites attached to the central processor
[Ref. 34 pp. 28-34). The Model II envisions the use of some “smart” peripherals.
These would include:

o Programmable Front End processors to interface:

1. circuit cryptos

[

systermn computers
3. offline storage devices
4. operator interface devices

¢ remote terminals for message preparation and distribution [Ref. 34 : pp. 17-22]

The Model I would use data display units at operator terminals vice contiol
teletypes. This would speed message entry, screening, and distribution. The terminal
would provide some means to ensure correct format and entry of information during
message preparation [Ref. 34: p. 12]. This might take the form of message templates
or canned message formats. Remote terminals in non-mission critical areas might use
non-development itemis (NDI) [Ref. 34 p. 21].  “NDI is usually ofl-the-shelf or
commercial-type products, but may also include equipment already developed by or for
the Department of the Navy, or other military services or foreign military services
[Ref. 35].." 10C for a follow on system might be the mid 1990's [Ref. 32}

2. Unified Network Technology

Unified Network Technology (UNT) and Communication Support System
(CSS) are current initiatives to improve and advance the state of the art in Naval com-
munications systems. UNT anticipates the creation of communication packet networks
which will have flexible topology. Thesc networks would provide most eflicient use of
existing and future communications systemis by allowing routing of communications
through any available communication media in an automated packet network. Present
systems involve the use of dedicated links and dedicated hardware systems. This can
result in inefTicient use of communications resources as some media remain idle while
other media is heavily loaded. UNT would use automated means to sclect the aviulable
media and use it transimit conununications tratlic. The CSS comprises the shipboard or

shorebased network controliers and interfuce units to establish connectivity between
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Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED

NAVMACSMODEL I
Current Function Descriptiof.iecccsressvicsseecnserecsenscsnnscennens V1 V2

¥3 V4 VS

Up to 4 Fleet Broadcast CircuitS..coveevcccecicvincveciveviscieeennX. X X X X
Up to 4 Full Period Termination CircUitS.....cvevvenierveereerrinens X X X
IXS Subscriber CapabilitV . .coocveeveniiiiieiiireriiiiecciee e X X X X X
Flexible Circuit Definitions.....ccooveeveverivennnne, ceeerrr e e X X
Syvstem Control by Displays cccceeeiivivciniininciinieeiessceenen XX
On-line Message Composition............ e e e X X X
Long Term Msg Storage: Retrieval....cccocviniiicniininniinnnn, X X X
Data Base Storage. Retrieval....oooovvveennieecinnniiiinn, vreerens vervrrees X X
Remote Terminal SItes...cccooiiimiririiiicinieeniiieeereee e, X X
Data Base For Onboard Organization.................. e ereireees X X
Automatic Onboard Delivery e X X
Duplicate Message Processing................ TP, O XX
Automatic Circuit Selection and Relaviiciiiiiviinieeeneen. X X
Additional Model IT Functions ...ceeccvcsinsnscneccccrnscancsssnennnnee. V2 V3 V4 V3
Tactical CUDIXS (Ship-Ship OTO'S).eccccciiiviecceviiciiecciece X X X X

Add System Control by Displays.......... reeenst e e s X

On-line Composition With Formats ..ceeccceevinviiviviiccieeeee X X X X
Flexible Circuit Definitions....eeevnnivininniinieinininnresseeennnee. X X X X

(including CUDIXS broadcast, LAB NATO circuits

flect broadcast, FPT, automated nets)
REMIOLE SIES. eiiieitreiriireeieiteeeerrereeteee st eiare e cenrreesrnesan X X
Add More Remote Sites ... Ceeeerreeetenret e s tarsabareasaraarsn veveens X X
Flexible Configuration of Remote Sites and ercuxts ............ X X Xx X
Increased On-line Message Storage .....ccceeeinn, veretteresrnne X X XX
Automated HF Net Subscriber .cccovvevviecvciereivicereeeicceieeineeenn X X X X
Automated HF Net Control........... e e e rareeens e X X
Semi-Automatic DIStrIBULION vcvevveiiviecren e, X X
Improved Long Term Message Storage and Retrieval........x X X X
Improved Duplicate Search....ccovieeiviiniiinniincncinneseeseeenns X X
Canned Message Composition ...cceevvevnieeniiiniissienereesnienenn X X
Decrease Msg Transmission Delavs....coccvnniiiiiiiiiiiceicccnnnns X

users by employing the various hardware resources available. These systems approaches

to communications will be software intensive. Distributed network control. flexibie

network topologv, and adaption to changing communications loads will require soft-

ware control. CAPS could be utilized in the development of such software.
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C. POSSIBLE CONTRIBUTIONS TO TELECOMMUNICATIONS FROM CAPS
RESEARCH

Current budgetary uncertainties, changing threat and mission requirements,

R

changing technology, and long developmental lead times will certainly impact any future

systems. As uncertainty is inherent in any discussion of future technology applications,

- -

it is only possible to suggest several possible research avenues arising from CADPS re-
search, which might be applied to telecommunications software systems problems.
K 1. Rapid Prototyping and CAPS
. It is likely that future svstems will scek to provide more and faster service to
users by automating many more functions. Automated functions implies the use of
; computing systems and software. Software requires development and the first step in
! software development is definition of the functional specifications. Rapid prototyping
methodology directly addresses the early, precise definition of functional specifications
so thac [uil scale development of the system can proceed. CAPS offers a tool to imple-
ment Ada program prototyping and design in a rapid prototyping environment. Once
fully implemented CAPS can be applied directly to the development of new telecommu-
: nications software systems.
New guidance under Secretary of the Navy Instruction 5200.37 [Ref. 36] de-
‘ fines acquisition policy for software intensive command and control information sys-
tems. This policy applies to those research and development programs in which software
cost represent a substantial (raction of the total system development costs (more than
. 00 percent) [Ref. 36]. Specifically addressed are the use of software prototypes to sim-
! ulate important interfaces and to perform the main functions of an intended system
without strict adherence to the final standards in hardware, specd, size, or cost con-
; straints required of the finished system [Ref. 36]. The CAPS system as currently
. planned will provide system simulations of precisely that type. The CAPS svstem,
however, aims to provide simulations which do conform closely to any real-time con-
straints requircd of the proposed software system. [Furthermore, CAPS implements the
rapid prototyping paradigm, offering demonstrations for the customer. This mects the

13

requirement to promote . cflective interaction between the user and the developer

(Ref. 36].” The policy to promote carly deliverv of command and control information
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syetems software products through rapid prototyping can be met through the applica-
tion of CAPS. CAPS could also meet the need to reuse as much existing software as
possible, and the prototypes produced will be written in a high order language (Ada)
> [Ref. 36].

2. Reuseable Assembler Code

o
-

« A generally available feature in Ada compilers is the ability to import assembler
code to implement sub-program bodies where speed of execution, or compactness of
E code i1s a concern. CAPS will use retrieval of reuscable software modules to speed pro-
i' totyping. These reuseable modules are expected to be Ada code, but could be sections
.‘, of assembler code where necessary. So long as Ada compilers are available {or the target
J machine, the assembler code already written for that machine coild be reused. There-
P fore, the question of conversion to Ada is not only, "Should the systems be converted
2 to Ada?; “but also, “How much of the existing code needs to be replaced?” Functional
specifications for existing systems are understood (presumably) cmpirically since the

E systems exist and are operational. Given the functional specifications, they could be
X expressed conveniently in PSDL and input into CAPS to generate an Ada prototype,
W which could be proofed, then finished out using Ada or assembler to implement the Ada
i subprograms. Several additional questions also arise including:

b ¢ (Can the assembler code be appropriately decomposed into modules?

‘3 e Can the asscmbler code modules be described by normalized specifications within
N the software base?
25 * Can thg functions oftlle assembler code be decomposed so that part of the system

can be implemented in Ada and the current code reused?

. ® Does there exist an Ada compiler for the AN/UYK-44 computer and (or that
\ matter, what will be the next generation communications computer?

; ¢ What costs are gssociated with such an approach as opposed to implementing the
s system entirely in Ada?
'.:'_ 3. Subordinate Tools And Techniques

4 a. Translators

‘ Subordinate to the overall CADPS is the technique of developing and utilizing ’
ﬂ' automated translator generators to produce automated translators. la principle, this
\ approach could be applied to the conversion of existing programs in any language into
o’
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any desired implementation language. Thus it may be possible to translate cunent as-
sembler code software directly into Ada. [t would be necessary to examine the issues
of cost and feasibility of such an approach. It would also be neccesary to empirically
demonstrate the concept and to produce a {ormal definition of the relationship between
the two languages to ensure correctness in the final product.

b. Lditor Generators

The Modcl II envisions the use of templates or preformatted message

blanks for preparation of messages for transmission on electronic terminals. This facility

currently exists in some instalations of NAVMACS and CUDIXS. In CAPS, a similar

Y P T N ) 'l‘—i

capability 1s envisioned. It takes the form of a syntax directed editor for PSDL. This
editor would understand the correct syntax and usage for PSDL and would assist the
operator to enter a syntactically correct PSDL prototype into the system. There exist
several automated application generator facilities to create such “smart” editors
[Ref. 17: pp. 12-14]. The approach in CAPS will be to utilize such a generator to create
the syntax directed editor for CAPS. [t may well be feasible to apply such an editor
generator to generate editor facilities which “"understand” the correct format for various
types of Naval messages. Generation of custom editors for general message or struc-
tured messages (JINTACS, et.al) might be possible. These techniques are incidental
to the central thrust of CAPS and this thesis, which is to create an integrated system of
tools for the generation of Ada applications.
¢. Network Simulations

CAPS models soltware systems as systems of operators communicating via
data streams. Each data strcam in the CAPS could be a FIFOQ qucue or a sampled
stream. Each operator may have time constraints and conditional input or output.
Thus, a CAPS modcl closely resembles a petri net, a system of nodes connected by
communication paths. In principle, the basic elements of CAPS could be utilized to
model and study the behaviour of networks. The data streams which now have queue
length one, could be easily modified to provide generic queues with length 7. Thus it
may well be possible to use CAPS as a tool to model various network architectures. to
provide operations research simulations of any network problem. Statistics collected

from the run time profiler could provide insight into questions of network stability,
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throughput, and possible choke points. The graphic user interface would provide a
pictoral representation of the network. The syntax directed editor and the software base )

management system would simplify construction of network models. -
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V. CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES FOR
N CAFS
Y
\ . . -~ g
N It is {easible to describe a prototype in PSDL and to use an automated facility to
K.
e . . N
- translate the prototype into Ada. The present translator lays a sound foundation (ur
[/ . . . . .
2 further development. It implements and recognizes the [ull syntax of PSDL as published
.l .. . . ~ N . .
o by Lugi in her Ph.D. dissertation [Ref. 19]. The fundamental conceptual design imple-
‘.. . ~ . .
. mentation of the major PSDL syntactical constructs has been completed and docu-
Y mented. The translator produces rudimentary Ada code for interconnection of reuscable
)
) ) software program modules. Several additional research possibilities exist. First, the
3,
' current translator is an empirical demonstration of the capability. Therefore, it should
not be expected to {unction properly in all cases. Work must be undertaken to establish
(- a rigorous, [ormal definition of the relationship between the svntax semantics of PSDL
o and the syntax;scmantics of A\da. Once such a rigorous definition has been produced,
‘-‘ .
b it must be applied to the translator to produce a facility which works for general cases.
;.r"-‘:
N Second, Ada is a robust language with a large syntax. PSDL is also a robust lan-
\
N guage, but has a very small syntax. Can PSDL cfTectively describe all (or most) of the
- constructions possible with Ada? This is similar to the formal definition probleni. It
> may be necessary to define certain PSDL constructions and specify the Ada construction
- used to implement it in much the same way as Timer, Operator, and Data Stream have
~ been specified in this thests. It may also be necessary to specify that certain Ada con-
structs cannot be adequately represented in PSDL. This is unlikely: however, imple-
" mentation of some Ada constructs mav require highly sophisticated versions of the
- translator.
‘.' S ol . . . . . . B . . B
- Fhird is the issue of code optimization. Some programs may require optimization
. for speed of exccution, while others require optimization for code sie. Can the trans-
:- lator be made to generate Ada implementations based on optimization criteria?
s . . - s . . . .
2 [ourth, the Static Scheduler (SS) uses a pre-processor written in Kodivak to extract
) tnformation about reul-time constraints for various opcrators. This information is used
1%
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to generate the static schedule for program operation. Kodivak provides the facility to
define separate sets of lexical definitions and attribute equations which appiy in specitied
cases. Thus the pre-processor should be integrated into the Translator. This would
eliminate the pre-processor as a single entity in the Execution Support Svstem and simi-
plify the integration of the Translator, Static Scheduler, and Dynamic Scheduler.
Finally, the Translator, Static Scheduler, and Dynamic Scheduler must be integrated

into a single tool. the Execution Support System, which can be integrated into CAPS.
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APPENDIX A. PSDL GRAMDMAR SUMDMARY

Several conventions are used for svmbology in the granunar. { Square Braces | in-
dicate optional items. { Curly Braces } indicate itemis which may appear zero or more
times. Bold face type indicates a named terminal svmbol which must appcar in the
program listing the programmer writes. “Double quotes” indicate character literals
which must appear in the program listing. The ”|” vertical bar indicates an exclusive-or
selection. In this case the programumer selects one and only one of the items scparated
by the vertical bar.

As an example, the token timing_info is one of six mutuallv exclusive possibilities
which may define the attribute token. The attribute token may appear zero or more
times to define the interface token, which is a required attribute of the operator_spec
token. Timing_info, if selected for attribute, may be empty, or it may contain onc or
more of the optional tokens allowed to deline timing_info. Each of these tokens may

appear no more than one time for a given instance of timing_info.

psdl = { component }

component = | data_type
| operator

data_type = type id tyvpe_spec type_impl

operator = operator id opcrator_spec operator_impl

type_spec = specification {type_decl] {op_spec_list} (functionality] end
op_spec_list = operator id operator_spec

operator_spec = specification interface [functionality] end

interface = {attribute [reqmts_traccl}

attribute | generic_param
| mput
| output
| states
| exceptions
| timing_info
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generic_param = generic tvpe decl
P o o —

\ input = input type_decl :
' output = output tyvpe_decl
. states = states type_decl initially expression_list .

P
L ! . . . (. I
o exceptions = exception id_list \
-~ id_list = 1d { 7,7 id} :
k timing_info = [maximum execution time time] !
. [minimum calling period time] 1
K. {maximum response tine time] .
) . . &)
v time = number [unit]

P unit = | microsec | ms | sec | min | hours

2 reqmts_trace = by requirements id_list
#

! functionality = [keywords| [informal_desc] [formal_desc] ;
o kevwords = keywords id_list ;
A informal_desc = description “{" text "}~ y
o formal_desc = axioms “{" text “}”

N type_impl = | implementation Ada id )

» . . . .

/ | implementation type_name { op_impl_list } end ‘
5 op_impl_list = operator id operator_impl '
. operator_impl = | implementation Ada id - g
ry | implementation psdl_impl

»

7 . . !

. psdl_impl =  data_flow_diagram ¢
o [streams]

‘ [timers]

[control_constraints] s
' [informal_desc] ,
g end

b
X, . .

. data_flow_diagram = graph { link }

.

-~ link = id "." opid "->" id

i . . w0 L0
. opid = 1d [ " time]

g
> streams = data_stream tvpe_dccl '-
. type_decl = id_list ":" type_name {“,” id_list " type_name } :
s tvpe_name = |id

) [ id " type_decl )

o . , .

e, tmers = timer id_list ;
1

o) control_constraints = control constraints { constraint }
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constraint =  operator id
[triggered [trigger] [ "if” predicate] [reqmts_trace] ]
[period time [reqmts_trace] |
(finish within time [requnts_tracej |
{output id_list if predicate [reqmts_trace] }
lexception id [if predicate] {reqmits_trace] }
{timer_op id [if predicate] [reqmts_trace] )

timer_op = | start | stop | read | reset
trigger = | by all id_list

| by some id_list

predicate = | not predicate
| predicate and predicate
| predicate or predicate
| expression_list
[id ™" 1d_list

expression_list = expression {“,” expression}

expression = | number
| constant
| id
| type_name “.'

“1d "(” expression_list ”)”
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! APPENDIX B. DIAGRAMATIC REPRESENTATION OF PSDL e,
The folowing diagrams present a tree structured breakdown of the PSDLlanguage '._
as applied in the translator. Each section is numbered with a large arabic numeral inside “
} . . . . » ’ o ” o '
! a circle in the lower left corner. This is a "key” number. Transitions between “key -
! sections are marked as lines terminated with a capital letter and one or more “keyv” ,'
; numbers. For example, the non-terminal symbol, data_type, is found under “key” ;
¥ b
y section 1, as a possible representation of the non-terminal symbol, component. The ::
: transition to a section with more detail on data_type is marked as B,3. This means go N
' to the line marked B under “key” section 3. Moving to that section leads to the tree '
; structured breakdown of the non-terminal symbol, data_type, into the terminal svmbol, !
pY.t
TYPE, followed by the non-terminal symbols, id, tvpe_spec, and type_impl. Byt
LY
.
; o
)
Cd
A 4
‘N
( start "
: psdl l:t
[}
: psed component ’ :
i — Ry
W o8
i N
8,3 G,5 V)
mponent |r
: data_type, ' o
> | operator s
3 u'
D r 3
5
operator ,
. OPERATOR op _Name op _SPeC  op _impl %
, N
D N
¥ LY
1) o)
operator_Spec A
l'—‘ : SPECIFICATION interface functionaiity END -~
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APPENDIX C. ADA SOURCE CODE IMPLEMENTATION OF VARICUS
: PSDL CONSTRUCTS
A. GENERIC QUEUE MODEL
'
. generic
type ITEM is private
. package QUEUES is
5 type QUEUE (Size : POSITIVE) is limited private;
procedure CLEAR (TheQueue : in out QUEUL);
procedure ADD (Theltem : in Item;
- ToTheQueue : in out QUEUE);
- procedure REMOVE (Theltem : out Item;
T FromTheQueue : in out QUEUE);
[ OVERFLCW,;
UNDERFLOW : exception;
private
N type LIST is array (INTEGER range <>) of ITEM;
. type QUEUE (Size : POSITIVE) is
" record
F. Theltems : LIST (0..Size);
-: TheBack : NATURAL := 0;
1 end record;
” end QUEUES;
package body QUEUES is
3 procedure CLEAR (TheQueue
cut QUEUE) is
vegin
TheQueue. TheBack : =
end CLEAR;
[ procedure ADD (Theltem : in ITEN;
o ToTheQueue : in out QULUL) is
. begin
ToTheQueue. Theltems(ToTheQueue. TheBack + 1) := Theltem;
. ToTheQueue. Thelack := ToTheQueue. TheBack + 1;
. exception
. when Constraint_Error =>
raise OVERFLOW,;
end ADD;
1 procedure RLEMOVE (Theltem : out ITEM;
N FromTheQueue : in out INITSZER) is
A besin
3 1f FromTheQueue. TheBack = 0 then
. raise UNDERFLOW,

alse

~1

(4]
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AN '-." -~ ..-..
¢-_.‘__.'~ 4 "'.'r,\ _\'J'_ .: .r

D N A S PO A S (R R LR G R SUL S N e e
= - = = ] a

'u'-‘

Y T T, O SRR O N

I'J-'.

1o

TSRO S W S B oy |

o

r_ =
1

-~

PP
L e

s RR Ry

=

W
xta

SR A

PO E LA

R R /.,-A



Theltem := FromTheQueue. Theltems(1);
FromTheQueue. TheBack := FromTheQueue.TheBack - 1;
end if;

end REMOVE;

B. GENERIC PACKAGES CONTAINING FIFO AND SAMPLED STREAM
BUFFER TASKS

1. FIFO Queue

generic type ELEMENT_TYPE is private;
package FIFO is
task FIFO_BUFFER is
entry CHECK (NEW_DATA : out BOOLEAN);
entry PUT (VAT : in ELEMENT_TYPE);
entry GET (VALUE : out ELEMENT_TYPE);
end FIFO_BUFFER:
BUFFER_READ_ERROR,
BUFFER_WRITE_ERROR : exception;
end FIFO;

package body FIFQ is
task body FIFO_BUFFER is
BUFFER : ELEMENT_TYPE;
VALUE : ELEMENT_TYPE;
NEW_DATA_VALUE : BOOLEAN := false;
begin
loop
select
accept CHECK (NEW_DATA_VALUE : out BOOLEAN) do
NEW_DATA := NEW_DATA_VALUE;
end CHECK;
or
accept GET (VALUE : out ELEMENT_TYPE) do
if NEW_DATA_VALUE then
VALUE := Burlity;
NEW_DATA_VALUE := false;
else raise BUFFER_WRITE_ERROR;
end if;
end GET;
or
accept PUT (VALUE : in ELEMENT_TYPLE) do
if not MNEW_DATA_VALUE then
BUFFER := VALUE;
NEW_DATA_VALUE := true;
else raise BUFFER_RLEAD_ERROR;
end if;
end PUT;
end select;
end loop;
end FIFO_BUFFER;
end [IFO;
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2. Sampled Stream Queue ~
¢
generic type ELEMENT_TYPE is private »
package SAMPLED is .
task SAMPLED_BUFFER is -
entry CHECK (NEW_DATA : out BOOLEAN); ::
entry PUT (VALUE : in ELEMENT_TYPE); v
entry GET (VALUE : out ELEMENT_TYPE); >
end SAMPLED_BUFFER: Ky
end SAMPLED;
package body SAMPLED is .
task body SAMPLED is X
DUFFER : ELEMENT_TYPE; )
VALUE : ELEMENT_TYPE; :\
NEW_DATA_VALUE : BOOLEAN := false; )
begin -
loop :
select
accept CHECK (NEW_DATA : out BOOLEAN) do o
NEW_DATA := NEW_DATA_VALUE: '
end CHECK: -
or
accept GET (VALUE : out ELEMENT_TYPE) do e
VALUE := BUFFER; -
NEW_DATA_VALUE := false; -
end GET; o
or e
accept PUT (VALUE : in ELEMENT_TYPE) do -
BUTFER := VALUE; L
NEW_DATA_VALUE := true; -
end PUT; i
end select; -
end loop; <
end SAMPLED_BUFFER: A
end SANPLED:
>
C. GENERIC PACKAGE IMPLEMENTING TIMER j'-
generic s
with CALENDAR; -
use CALENDAR; -
package TIMER is -3
StartTime : TIME; -
ReadTime : TIME; ]
ElapsedTime : DURATION; ’
TotalElapsedTime : DURATION; o
Run : BCOLEAN; y
erd TIMER;
I
with CALENDAR; o

use CALENDAR;
package body TIMER is;

77




procedure START (StartTime: out TIME;
Run : BOOLEAN);
begin
if not Run =>
StartTime := CLOCK;
Run := True;
end if;
end START;

procedure STOP (StartTime : in TIME;
ReadTime : out TIME;
ElapsedTime : cut DURATION;
TotalElapsedTime : out DURATION;
Run : in out BOOLEAN);
begin
if Run =>
ReadTime := CLOCK;
ElapsedTime := ReadTime "-" StartTime;
TotalElapsedTime := TotalElapsedTime
Run := False;
end if;
end STOP;

+" ElapsedTime;

procedure READ (StartTime : in TIME;
ReadTime : out TIME;
ElapsedTime : out DURATION);
TotalElapsedTime : out DURATION);
begin
ReadTime := CLOCK;
ElapsedTime := ReadTime "-" StartTime;
TotalElapsedTime := TotalElapsedTime

+" ElapsedTime;
end READ;

procedure RESET (StartTime : out TIME;
ReadTime : out TIME;
“lapsedTime : out DURATION;
TotalElapsedTime : out DURATION;
Run : out BOOLEAN);
begin
StartTime := CLOCK;
ReadTime := CLOCK;
ElapsedTime := 0. 0;
TotalFlapsedTime := 0.0;
Run := False;
end RESET;
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APPENDIX D. PROGRAM LISTING FOR TIilE TRANSLATOR

The following 1s a listing of the Kodivak input file which is compiled create the
translator. It 1s composed of three scctions delimited by the % % marker. Conuncents
are indicated by the ! mark and extend to the end of the line. Backslash followed by t
or n [ollows the UNIX convention and stands for “tab” and "newline” respectively.

The first part of the file 1s the lexical definition section. The various lexical tokens
in PSDL are identified. In order to assist this definition, classes of lexical characters can
be defined. Such definitions are identified by the % define statcment. Standard “Kicence”
closures are used throughout (i.e.,, {}+ indicates onc or more, {}* indicates zcro or
more). The solid vertical bar ( | ) indicates an “or” selection. The circumflex (shifted
6) in the definition for Char (character) indicates “all symbols except those immediately
following” (i.e., all except left and right curly braces). Left and right brackets between
two words indicates they are to be evaluated together as a lexical token.

The %% marker begins the second section, lHere, the attributes for non-terininal
and some terminal symbols of the language are defined. Kodivak allows either string
or integer type attributes. In this case all attributes are string type. LEach non-terminal
(e.g., start) has one attribute, trn (shorthand for translation), of type string. Al
Kodiyak translators have a start symbol which is used to indicate that the input file has
been completely reduced and output can begin. Terminal symbols can also have attri-
butes. In this case five terminal symbols have been assigned the special attribute
Ytext. This attribute returns the value of the input text which the terminal symbol

matched.

Scction three of the Kodivak [ile begins with the second % % marker. It is a repre-

scntation of the grammatical structure of PSDL. It begins with the start svmbol. The
start symbol cannot appear on the right side of any production rule. 1 it did, output
would commence even though the parsing tree of the input file would not have been
completely reduced.  Each producton rule w the grammar is represented and attached

to each rule is an “attribute equation” surrounded by curly braccs. The "attribute
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equation” specifies what output is to be created when the corresponding PSDL pro-
duction rule i1s reduced. Within the “attribute equation,” square brackcts surrounding
a series of items indicates the concatenation of the items. The solid vertical bar is used
to indicate alternate possibilities for a given production rule. This is an exclusive or se-
lection. It is also precedence ordered (i.e., top to bottom, the first rule which matches
is the rule evaluated). Care must be exercised here as some states are implied and not
explicit. [For example, functionality has but one attribute equation. [{owever, it has
an 1mplied empty state, since all three of the non-terminal symbols which are part of the
production rule for functionality can have an empty state. Recursion and optional cases
are supported. The naming conventi..) used in this translator is as follows:

* opt_name means the item is optional

* name_l_list means one or more of the item

s name_0_list means zero or more of the item

When compiled, a program of about 230 kilobytes in size is created. The compiled
program is C object code. Certain features are incorporated in all products created with
Kodiyvak. The executable code recognizes the standard UNIX -h, help, switch and re-
sponds with the correct usage syntax and a listing of optional switches. The three most
useful are:

¢ -ooutfile_name, allows the naming of a {ile to receive the output of the translator
e -], causes the translator to display each PSDL token as it is recognized

¢ -y, causes the translator to display each PSDL producticn rule as it is resolved

The last two switches are especially helpful in debugging an input program.

!definitions of lexical classes

%define Digit : [0-9]

%define Int :{Digit}+

wdefine Letter :[a-zA-Z_]

wdefine Alpha :({Letter)|[{Digit})
%define Blank :[ \t\n]

%define Char (1]

%define Quote ("M

! definitions of white space

:{Blank}+
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! definitions of compound symbols and keywords

GTE
LTE
NEQV
ARROW
TYPE
OPERATOR
SPECIFICATION
END
GENERIC
INPUT
QUTPUT
STATES
INITIALLY
EXCEPTIONS
MAX_EXEC_TIME
MAX_RESP_TIME
MIN_CALL_PERIQD
MICRQOSEC
MS
SEC
MIN
HOURS
BY
KEYWORDS
DESCRIPTION
AXIOMS
IMPLEMENTATION
ADA
GRAPH
DATA_STREAM
TIMER
CONTROL
TRIGGERED
ALL
SOME
PERIOD
FINISH
EXCEPTION
READ
RESET
START
STOP
IF
NOT
AND
OR
TRUE
FALSE
1D
STRING_LITERAL
INTEGER_LITERAL
REAL_LITERAL
TEXT

’ -. ' ~° \.;,,\:.-‘J,-.;.'-;.',.;.'.;,;,.',-. TP

: ll>="
: l|<="
L]
; "_>ll

: type|TYPE

: operator {OPERATOR

:specification|SPECIFICATION

:end |END

: generic|GENERIC

: input | INPUT

: output | OUTPUT

:states|STATES

tinitially|INITIALLY

: exceptions | EXCEPTIONS

:maximum{ Jexecution{ Jtime|MAXIMUM[ JEXECUTION[ JTIME
:maximum{ Jresponse{ ]Jtime|MAXIMUM{ JRESPONSE[ JTIME
:minimum{ Jealling[ Jperiod|MINIMUM[ JCALLING[ ]PERIOD
:microsec|MICROSEC

:ms | MS

:sec|SEC

:min|MIN

: hours [ HOURS

:by[ Jrequirements|BY[ JREQUIREMENTS

: keywords | KEYWORDS

:description|DESCRIPTION

: axioms | AXIOMS

: implementation| IMPLEMENTATION

: ada|AdajADA

: graph|GRAPH

:dataf{ Jstream|DATA[ ]STREAM

¢ timer | TIMER

: control[ Jconstraints|CONTROL[ JCONSTRAINTS
:triggered | TRIGGERED

:by[ ]all|BY[ JALL

:by[ ]Jsome|BY[ ]JSOME

:period|PERIOD

: finish{ Jwithin|FINISH[ JWITHIN

:exception{EXCEPTION

: read |[READ

:reset |RESET

:start|START

: stop|STOP

if|IF

. ”? " l "not" I "NOT"

: l'&H I "arld” I "AND"
: 1" I 1" ' ”01‘” [ ”OR”
: true | TRUE
: false|FALSE
:{Letter|{Alpha}*
: {Quote}{Char}*{Quote}

: {Int}
:{Int}". "{Int)
1t 1
:"("{Chary*"y"
81
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! operator precedences
! %left means group and evaluate from the left

%left OR;

%left AND; .
%left NOT;

%left "<, '>', '='  GTE, LTE, NEQY;

orar .
10

! attribute declarations for nonterminal symbols

start { trn: string; };

psdl { trn: string; };

component { trn: string; };
data_type { trn: string; };
operator { trm: string; };
type_spec { trn: string; };
opt_type_decl_1_list { trn: string; };
type_decl_1_list { trn: stroiug; };
type_decl { trn: string; };
op_spec_0_list { trn: string; };
operator_spec { trn: string; };
interface { trn: string; };
attrib_0_list { trm: string; };
attribute { trn: string; };
generic_param { trn: string; };
input { trn: string; };

output { trm: string; };

states { trn: string; };
exceptions { trn: string; };
timing_info { trn: string; };
maxet { trn: string; };

maxrt { trn:string; };

mincp { trn: string; };

time { trn: string; };

unit { trn: string; };

id_list { trn: string; };
opt_reqmts_trace { trn:string; };
reqmts_trace { trn: string; };
functionality { trn: string; 1,
opt_keywords { trn: string; };
opt_informal_desc { trn: string; };
opt_formal_desc { trn: string; };
keywords { trn: string; };
informal_desc { trm: string; };
formal_desc { trn: string; };
type_impl { trn: string; };
op_impl_0_list { trn: string; };
operator_impl { trm: string; };
psdl_impl { trn: string; };
data_flow_diagram { trn: string; };
1ink_0_list { trn: string; j;
link { trn: string; };

opid { trn: string; };

opt_time { trn: string; };
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%% Y 1M
-

opt_streams { trn: string; };

opt_timers { trn: string; };
opt_control_constraints { trn: string; };
streams { trn: string; };

type_name { trn: string; };

timers { trn: string; };

- control_constraints { trm: string; };
constraint_O_list { trn: string; };
constraint { trn: string; };
operator_name { trn: string; };

' ' opt_trig { trn: string; };

FIELEE
-

N

(AT

3
-

opt_trigger { trn: string; };
trigger { trn: string; };

opt_per { trn: string; };
opt_fin_w { trn: string; };
out_0_1list { trn: string; };
except_0_list { trn: string; };
time_O_list { trnm: string; };
timer_op { trn: string; };
opt_if_predicate { trn: string; };
predicate_branch { trn: string; };
predicate { trn: string; };
expression_list { trn: string; };
opt_expression { tra: string; };
expression_0_list { trn: string; };
expression { trn: string; };

w q

LN Y

SO,

» v
age

R e U

2

infix_op { trn: string; }; Eﬁ
constant { trn: string; }; iy
!attrbute declarations for terminal symbols 5‘
ID{ %text: string; }; !'
TEXT{ %text: string; }; o
STRING_LITERAL{ %text: string; }; o
INTEGER_LITERAL{ %text: string; ); N
REAL_LITERAL{ %text: string; }; )
x
)
fove .
! psdl grammar -
?
start &
psdl v
{ %output(psdl. trn); } ;“
; o?
psdl N
psdl component ~
{ psdl[1]. trn = [psdl[2]. trn,component. trn]; } X
{ psdlfi]. trn = ""; ) -
) :-'f
o
",
e
ol
\('
Ng
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’
| component o
] 5
3
data_type iy
{ component. trn = data_type. trn; } 1
| operator b
{ component. trn = operator. trn; } ?
. A\l
¥ ’ N
data_type ]
P : TYPE ID type_spec Eype_lgpl S ) "
1 { data_type. trn = [ type ,;D.%text, \n »type_spec. trn, "
"\n",type_impl. trn, \n"] ; } N
; r
h‘.
Chat
cperator -
: OPERATOR operator_name operator_spec operator_impl ~3
{ operator.trn = [ procedure ",operator_name. trn, is;\n", o~
operator_spec. trn, '\n" ,operator_impl. trn,"\n"]; } Y
. )
3

type_spec
: SPECIFICATION opt_type_decl_1_list op_spec_0_list functionality END
{ type_spec.trn = [opt_type_decl_1_list.trn,"\n",op_spec_0_list.trn,
"\n", functionality. trn," end;\n"}; }

[d

.
3

R A LR

opt_type_decl_1_1list

type_decl_1_list N
{ opt_type_decl_1_list.trn = type_decl_1_list.trn; } ~:§
{ opt_type_decl_1_list.trn = ""; } o~

: :
type_decl_1_list :;
: type_decl_1_list ',' type_decl 1

{ type_decl_1_1list[1]. trn = [type_decl_1_list[2].trn, .

"\n",type_decl. trn]; } <

| type_decl )

{ type_decl_1_list.trn = type_decl. trn; }

; o
type_decl N,

: id_list ':' type_name .
{ type_decl.trn = [id_list.trn,":",type_name. trnl; } N

. J
op_spec_0_list ;i
1 cp_spec_0_list OPERATOR operator_name operator_spec N N
; { op_spec_0_1list{1l]. trn = [op_spec_0_list[2]. trn, \n procedure , -

operator_name. trn," is \n'",
operator_spec. trn]; } .

. -
IR

, { op_spec_0_list.trn = ""; }
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operator_spec
SPECIFICATION interface functionality END
{ operator_spec. trn = [interface.trn, '\n",
functionality. trn,” end;\n"]; }

1%

-
r'l ,l ’

.

3

. ]

- -

interface
: attrib_0_list
{ interface.trn = attrib_0_list. trn; }
5
attrib_0_list
attrib_0_list attribute opt_reqmts_trace
{ attrib_0_list{1]. trn = [attrib_0_list{2]. trn,opt_reqmts_trace. trn]; }

f

{ attrib_0_list.trn = ""; }.
H
attribute
: generic_param
{ attribute. trn = generic_param. trn; }
| input
{ attribute. trn = input.trn; }
| output ]
{ attribute. trn = output. trn; } ’
; states 3
{ { attribute. trn = states. trn; } g
| exceptions N
{ attribute. trn = exceptions. trn; } :f
| timing_ info i
{ attribute. trn = timing_info. trn; } {.
; l

~
generic_param ;
: GENERIC type_decl 2
{ generic_param.trn = [" generic \n",type_decl.trn]; } RN

. S

’ )

input v
INPUT type_decl A

{ input. trn = (" : in ",type_decl. trn}; } t

H N4

Y

output )
QUTPUT type_decl .

{ output.trn = [ : out ",type_decl.trn]; } R

H :i

states -

RN

STATES type_decl INITIALLY expression_list
{ states. trn = ['procedure PRELOAD is;\n PUT (",type_decl. trn,
"y;\n'",expression_list. trn]; }

T NS T
> IJ{’:’.’I"'
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exceptions
EXCEPTIONS id_list

{ exceptions.trn = ["raise exception '

',id_list. trn,";\n"]; )

id_list

id_list '," ID
{ id_list[1]. trn [id_list[2]. trn,
ID

" on

,ID. %textl ; }

{ id_list[1]. trn ID. %text; }

.
b

et

tlmlng_Lnfo
: maxet

{ timing_ info. trn = maxet.trn; }

mincp

{ timing_info.trn = mincp.trn; }

maxrt

{ timing_info. trn = maxrt.tzrn; }

Sl S

MAX EXEC_TIME time
{ maxet.trn = time.trn; }

MIN_CALL_PERIOD time
{ mincp. trn = time. trn; }

MAX RESP_TIME time
{ maxrt.trn = time.trn; }

INTEGER_LITERAL unit
{ time. trn = [INTEGER_LITERAL. %text,unit. trn}; }

MICROSEC

{ unit. trn

MS

{ unit.

SEC

{ unit.
MIN
{ unit.
HOURS

| { unit.

{ unit.

- . o . ~ -.rs\ S e N
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E opt_reqmts_trace =
" ¢ reqmts_trace v
: { opt_regmts_trace. trn = reqmts_trace. trn; } k
b L)
{ opt_reqmts_trace.trn = ""; } F

; Iy

reqmts_trace ™~

" : BY id_list -
) { reqmts_trace.trn = ""; } ~
3 o
)

1 functionality ,
p opt_keywords opt_informal_desc opt_formal_desc ~
; { functionality. trn = [opt_keywords. trn,opt_informal_desc. trn, ﬁ
3 opt_formal_desc. trn] ; } ~
\ 5 Py
)

opt_keywords by
: keywords .

{ opt_keywords. trn = keywords. trn; } o
{ opt_keywords.trn = ""; } 2

. (),
’ )

opt_informal_desc ::

informal_desc D

{ opt_informal_desc.trn = informal_desc. trn; } :

»

{ opt_informal_desc.trn = ""; } 7y
s )

opt_formal_desc Ct

formal_desc ]

{ opt_formal_desc. trn = formal_desc. trn; } L

l

{ opt_formal_desc.trn = ""; } S

; L4

keywords ?f

KEYWORDS id_list o

{ keywords. trn = "\n"; } el

H v
)

informal_desc o
DESCRIPTION TEXT :

{ informal_desc.trn = "\n"; } o

; -

Y

formal_desc S
AXIOMS TEXT ’

{ formal_desc.trn = "\n"; 1 <)

; 9

5
)

N
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type_impl
IMPLEMENTATION ADA ID
{ type_impl. trn = ["procedure ",ID.%text," is;\n"]; }
| IMPLEMENTATION type_name op_impl_O_list END
{ type_impl. trn = ["\n package DATA_TYPES is \n",type_name.trn,\a",
op_impl_0O_list.trn,"\n",
"end; \n'"'}; }

.
b

op_impl_0O_list
op_impl_0_list OPERATOR operator_name operator_impl

1",

{ op_impl_O_list[1].trn = ""; }
{ op_impl_0_list[1].txn = ""; }

.
b

operator_impl
IMPLEMENTATION ADA ID
{ operator_impl. trn = ["procedure ",ID.%text," is \n"]; }
| IMPLEMENTATION psdl_impl
{ operator_impl. trn = [psdl_impl. trn]; }

psdl_impl
data_flow_diagram opt_streams opt_timers opt_control_constraints
cpt_informal_desc END
{ psdl_impl. trn = [data_flow_diagram. trn,"\n",opt_streams. trn,"\n",
opt_timers. trn,”"\n" ,opt_contrecl_constraints. trn,
"\n",opt_informal_desc. trn," end;\n"]; }

.
s

data_flow_diagram
GRAPH link_0_list
{ data_flow_diagram. trn = ["\n-- Graphic representation: \n\t",
link_0_list. trn,"\n"] ; }

.
b

link_0_list
link_0_list link
{ link_0_list[1].trn = (link_0_1list[2].trn,” ",link. trn]; }

{ link_0_list.trn = ""; }
link

ID '.' opid ARROW ID

{ link. trn = [opid. trn,"_",ID[2]. %text,"_" , ID[1]. %text,"\n"] ; }
opid

ID opt_time
{ opid. trn = [ID. %text,opt_time. trn]; }

88

K .8 Lo dl e O e e 20

e T )

.-
I N Y ) 2

o« £ £ 9

PO N

PSR |

LU

Y % ot

a_e_n -5-5“

L2, %

Ty

WV

alsr

R S 2l

P A0 B

o
sy

DA A e A Y|

-
rl
.

<.
WY



— ————

195 199

A_LANGUAGE TRMSLHTM FOR A COMPUTER AIDED RAPID
WTETE;IE% SVSTE!I(U) MVN. POSTBRMUM’E SCHOOL

F/G 12/3




LQEGRT N 4% ‘

-s."\"\'.

-
-

.

B
wAowm A tate

LY
.

.
Wt

3 _.1.\h X
e N et

-
CLe

AR
ALAlna

,\:\»\.’,

T
%

Wl e By & S o

o eerwan

e Pt It IR U

At e

s
i

(Moot

16

14

L2

T
<
- L
oo
P
Z
Zz =
o =
=
o =
= =
Q 2
Dz
@S
xr =
>
.
a
-
w £
S =
x
Yoz
=
(9]
o8

1964

IR T S g ]

Ay

-

Y

h)

Ly

Y %

e

.
-
1

('Y Yo B ]
AR

AR




N s e erosa s e ] . ! . . oy " v o e
AN e R e g e {igh 4 A N B A e e ™ o W ¥ e Y % S8 - , 5 L cor® AaP LA v e’ A
[

et

R KA

opt_time -
1 ] 13
A s time !
. -t : "y M4, [y
B | { opt_time.trn = [":",time.trn, \n'}; } o
o
{ opt_time.trn = "\n"; }
’ 0
y
1 o
opt_streams
streams :
K | { opt_streams.trn = streams.trn; } “J
_ { opt_streams.trn = ""; } ’
) ; B
. "
opt_timers ;!
timers ‘
{ opt_timers.trn = timers.trn; } t

l

{ opt_timers.trn = ""; }

.
’

opt_control_constraints o

B ¢ control_constraints ‘o
' { opt_control_constraints.trn = control_constraints.trn; } -

l
5 { opt_control_constraints.trn = ""; } >
’ ; i
, streams t
: : DATA_STREAM type_decl .
{ streams.trn = [ task STREAM is new FIFO \n",

type_decl. trn,”";\n"]; } N

‘ ; o
[ .
type_name :;

- : ID '[' type_decl_1_list ')’ N
. | &nype_name.trn = [ID.%text,”"[",type_decl_1_list.trn,"I\n"]; } b
\ { type_name. trn = ID.%text; } N
E: ; <
[ timers .
3 ¢ TIMER id_list ~Y

{ timers.trn = ["package ",id_list.trn," is new TIMER;\n"] ;

packag _

. . 3
. control_constraints g
3 : CONTROL constraint_0_list -
K. { control_constraints. trn = constraint_0_list. trn; } b
¥ ; e
¥ - d
t,"‘.
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constraint_0_list
constraint_0_list constraint
{ constraint_0_list[1]. trn = [constraint_0_list(2]. trn," ",
constraint. trnj; }
l

{ constraint_0_list.trn = ""; }

?

constraint
: OPERATOR operator_name opt_trig opt_per opt_fin_w out_0_list
except_0_list time_0_list
{ constraint. trn = [" procedure ",operator_name.trn,"\n",opt_trig.trn,
"\n",opt_per.trn,"\n",opt_fin_w.trn,"\n",out_o_list.trn,
"\n",except_0_list.trn, "\n",time_0_list. trn,"\n"]; }

.
3

operator_name ’
type_name '.' ID '
{ operator_name. trn = [type_name.trn,".",ID.%text]; }
| ID
{ operator_name. trn = IJ. %text; }

opt_trig
TRIGGERED opt_trigger opt_if_predicate opt_reqmts_trace
{ opt_trig.trn = [opt_trigger. trn, ' \n",opt_if_predicate. trn,' " \n",
opt_reqmts_trace. trn, \n"}; }
|

{opt_trig. trn = ""; }
H
opt_trigger
: trigger
{ opt_trigger. trigger. trn; }

{ opt_trigger. = """y

trigger
ALL id_list
{ trigger.trn = [" if ",id_list.trn," and "); }
| SOME id_list
{ trigger.trn = ("if ",id_list. trn,"” or "] }

.
3

opt_per

PERIOD time opt_reqmts_trace
{ opt_per.trn = "\n"; }

{ opt_per.trn = ""; }

I A AT A




opt_fin_w

FINISH time opt_reqmts_trace
{ opt_fin_w.trn = "\n"; }

{ opt_fin_w.trn =

out_0_1list

out_0_list OUTPUT id_list opt_if_predicate o
{out_0_list(2]. trn," PUT

{ out_0_list{1]. trn
opt_if_predicate.trn," ",opt_reqmts_trace. trn]; )

except_0_list
except_0_list EXCEPTION ID opt_if_predicate opt_reqmts_trace

[except_0_list[2]. trn," RAISE ",ID.%text," ",

opt_if_predicate. trn,

B
)
!
)

time_0_list
time_0_list timer_op ID opt_if

{ time_0_list[1l]. trn = [time_0_list

ID. %text,

{ out_0O_list. trn =

{ except_0_list[1l]. trn

{ except_0O_list.trn =

{ time_O_list.trn =

{ timer_op. trn
{ timer_op. trn

{ timer_op. trn

opt_if_predicate
: IF predicate_branch
{ opt_if_predicate. trn

.{ timer_op. trn = ["READ ("]; }

{ opt_if_predicate.trn =

p \*‘\-.'- ‘-.-c‘\ \*'-‘\'\"'

»
c
)-
”
&

t_reqmts_trace
,id_list. trn,

,Opt_regmts_trace. trnj;

_predicate"opt_reqmts_trace

',timer_op. trn,"
,opt_if_predicate. trn,"\n

opt_reqmts_trace. trn];

["RESET ("J; )
["START (" }
("sToP ("5 )

("if ",predicate_branch. trn]; }
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: predicate_branch
o : predicate AND predicate %prec AND
;- * predicate_branch. trn = {predicate(1].trn," AND ",

. predicate[2]. trn] ; }
L | predicate OR predicate %prec OR
. { predicate_branch.trn = [predicate({1].trn,” OR ",
Lo predicate[2]. trn] ; }
Ay | NOT predicate %prec NOT

| { predicate_branch. trn = ["NOT",predicate. trn] ; }
&% | predicate
53 { predicate_branch. trn = predicate.trn; }

bl
o~
o predicate
A : expression
AN { predicate. trn = expression. trn ; }
=~ | ID ':' id_list
A { predicate.trn = [ID.%text,":",id_list.trn] ; }
b

N
NS, expression_list
i : opt_expression
; [ expression_list.trn = opt_expression. trn; }
) 5

~ opt_expression

:; : expression ',' expression_0_list
’ 1
(8

.-"

o

-

()

{ opt_expression. trn = [expression.trn,” , ",expression_0_list. trn]; !

{ opt_expression.trn = ""; }
3

expression_0_list -
expression_0_list ',' expression
{ expression_0_list[1]. trn = [expression_0_list[2]. trn," , ",
expression. trnl; }
l ",

{expression_0_list. trn = .

I
s'n’ "2

x

h %«
- ..l ,I.'.

»

»

o

TONAN

-
a

)

. hl' o
RS

2o

LAY
sl

N

AL

[

I ,'. " .- A AL AT LA w0 \~‘\(\-'\’-I s "f|‘J\.(\J‘_..'.";..V‘_-|f\f\"-f‘_..' e T LAl T A A T T Y -
3 » » v » - 8 B . A . o ! ! X - . » - o N N L)

. . o .\\\“-\.\\




- xT ey

<"

YT R

(",exvre551on list. trn,")\n"]; )}

",constant. trn,"\n"]; }

,constant. trn, " \n"}; )}

",constant. trn,"\n"]; }

infix_op. trn," ",

}

,operator_name. trn, '; \n"l; }

95l by 0Ty 60" " 9700 4% 4, v, . ; 13- 0% aty~aig® vave lab v gt e 5% BV
expression
: operator_name ‘Pre551on list ')’
{ expre931on.trn = %perator name. trn,
| operator_name '=' constant %prec LTE
{ expression.trn = [operator_name.trn," =
| operator_name '<' constant %prec LTE
{ expression. trn = [operator_name trn,"
| operator_name '>' constant mprec LIE
{ expression. trn = [operator_name. trn," >
| operator_name infix_op constant
{ expression.trn = [operator_name.trn{" ",
constant. trn, '\n"J;
] constant
{ expression.trn = constant.trn; }
| operator_name
{ expression.trn = [ ="
H
infix_op
GTE %prec GTE
{ infix_op. trn = ">=";
| LTE %prec LTE
{ infix_op.trn = ">="; }
| NEQV ' %prec NEQV
{ infix_op. trn = "/="; }
H
constant
: TRUE
{ constant.trn = "true"; }
| FALSE
{ constant.trn = "false"; }

| INTEGER_LITERAL

{ constant. trn = INTEGER_LITERAL. %text; )

| REAL_LITERAL
{ constant.trn =
| STRING_LITERAL
{ constant.trn

LG A BT A

.f.‘(‘

REAL_LITERAL. %text; }

STRING_LITERAL. %text;
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APPENDIX E. PROGRAM LISTING FOR TEST PROGRAM IN PSDL
The following test program is taken from the Ph.D. dissertation by Luqi which first :
b described PSDL [Ref. 19]. It is representative of most features in the PSDL language. '
. - . .. ~ "
1 It contains descriptions at several levels of decomposition of the proposed system. The 3
system envisioned is an embedded computer svstem for a medical treatment instrument
) known as a hyperthermia system. It implements real-time control constraints (required B
I for safety of the patient as well as ensuring correct application of the theraputic tech- Py
! :
nique). The system described would monitor and control the operation of a microwave N
generator. The microwave generator would be used to gencrate a hyperthermia condi-
tion for the treatment of tumors in the brain. There is a critical temperature range which 3
A . - . . ‘
i, would provide proper theraputic effect and vet remain safe for the patient. The systemn ¢
N has stringent shutdown time limits when either treatment is completed or the temper- A
ature of the target tissues exceeds a limiting value. Obviously, there could be severe
< . - . . .. c
b penalties should the system fail to function correctly. The time limits on startup and :
b~ )
A shutdown and the precise timing of the treatment period are critical. Maintenance of
: microwave power levels is critical to ensure correct temperature is maintained within a ,
narrow range. As such, this program illustrates many of the features of an embedded ‘
ﬁ‘; system with real-time constraints. Since the program utilizes most of the fcatures of ‘
X PSDL and is a rcal-time system, it is a convenicnt one to utilize to test the translator.
% The Ada code produced thus [ar is elementary at best. As noted in the conclusion for
f this paper, the formal relationship between PSDL and Ada must be established and
»n
I applied to the translator to ensure generality and correctness. Further, there is no li- )
K- brary of reuseable Ada software modules from which to draw implementation code for .
) the various parts of the hyperthermia system. The implementation code for this svtem ;
would require development. The translator provides (as intended) interconnection code ,
. . 0
9 for the soltware.
K :
! \
oL t
y ;
OPERATOR brain_tumor_treatment_system
v, SPECIFICATION
si INPUT patient_chart: medical_history,
o treatment_switch: boolean
A QUTPUT treatment_finished: boolean )
! STATES temperature: real ‘ .
INITIALLY 37.0
s
{
o 94 ]
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DESCRIPTION
{ The brain tumor treatment system kills tumor cells
by means of hyperthermia induced by microwaves.

g g g

END

IMPLEMENTATION
GRAPH

P
A A

P ok 2k A0 N

DATA STREAM treatment_power: real
CONTROL CONSTRAINTS

OPERATOR hyperthermia_system

PERIGD 200 BY REQUIREMENTS shutdown

OPERATOR simulated_patient

PERIOD 200

DESCRIPTION { paraphrased output }

END

Lo skt o Il

s

TYPE medical_history

[N -

iy

SPECIFICATION %

X OPERATOR get_tumor_diameter .
- SPECIFICATION ]

INPUT patient_chart: medical_history,
tumor_location: string
OUTPUT diameter: real

A\t
v

B -
D EXCEPTIONS no_tumor gy
: MAXIMUM EXECUTION TIME 5 ms ¢
DESCRIPTION t

{ Returns the diameter of the tumor at a given location, N

produces an exception if no tumor at that location. )

END

; N
KEYWORDS patient_charts, medical_records, treatment_records, G
lab records X
DESCRIPTION .
{ The medical history contains all of the disease and o~
treatment information for one patient. The operations N
for adding and retrieving information not needed by =~

the hyperthermia system are not shown here.

END

2

IMPLEMENTATION
tuple [tumor_desc: map[from: string, to: real], ... ]

;-.?'11‘
-

OPERATOR get_tumor_diameter
IMPLEMENTATION
GRAPH

I

»

DATA STREAM td: tumor_descr
CONTROL CONSTRAINTS
OPERATOR map. fetch

N

s 3
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EXCEPTIONS no_tumor IF not(map. has(tumor_location, td)})
END

END

OPERATOR hyperthermia_system
SPECIFICATION
INPUT temperature: real, patient_chart: medical_lhistory,
treatment_switch: boolean
OUTPUT treatment_power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 100 ms
BY REQUIREMENTS temperaturc_tolerance
MAXIMUM RESPONSE TIME 300 ms
BY REQUIREMENTS shutdown
KEYWORDS medical_equipment, temperature_control,
hypertkermia, brain_tumors
DESCRIPTION
{ After the doctor turns on the treatment switch, the
hyperthermia system reads the patient's medical record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of
42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.

END

IMPLEMENTATION
GRAPH

DATA STREAM estimated_power: real
TIMER treatment_time
CONTROL CONSTRAINTS
OPERATOR start_up
TRIGGERED IF temperature < 42.4
BY REQUIREMENTS maximum_temperature
STOP TIMER treatment_time
RESET TIMER treatment_time IF temperature <= 37.0

OPERATOR maintain
TRIGGERED IF temperature >= 42.4
BY REQUIREMENTS maximum_temperature
START TIMER treatment_time
BY REQUIREMENTS treatment_time, temperature_tolerance
OUTPUT treatment_finished IF treatment_time >= 45 min
BY REQUIREMENTS treatment_time
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OPERATOR start_up N
SPECIFICATION
INPUT patient_chart: medical_history, temperature: real N
OUTPUT estimated_power: real, treatment_finished: DbLuolean
BY REQUIREMENTS startup_time
MAXIMUM EXECUTION TIME 390 ms 5
BY REQUIREMENTS temperature_tolerance B
DESGCRIPTION Y
{ Extracts the tumor diameter from the medical history and ]

uses it to calculate the maximum safe treatment power.
Estimated power is zero if no tumor is present. The
treatment finished is true only if no tumor is present.

r
END .

PR P S L A

IMPLEMENTATION Ada start_up !
END

OPERATOR maintain
SPECIFICATION )
INPUT temperature: real '
QOUTPUT estimated_power: real, treatment_finished: boolean

MAXIMUM EXCECUTION TIME 90 ms

BY REQUIREMENTS temperature_tolerance

DESCRIPTION

{ The power is controlled to keep the power between 42.4 )

and 42.6 degrees C. 4

}
END

PO T @S

-
r

IMPLEMENTATION Ada maintain g
END A

OPERATOR safety_control "]
SPECIFICATION Iyt
INPUT treatment_switch, treatment_finished: boolean J
estimated_power: real ;
OUTPUT treatment_power: real )
BY REQUIREMENTS shutdown
MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperature_tolerance
DESCRIPTICN
{ The treatment power is equal to the estimated power ~
if the treatment switch is true and treatment finished f
is false. Otherwise the treatment power is zero.

END

3o 2 il W ST,

LAY

IMPLEMENTATION Ada start_up .
END .

et e a s s 2 K
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